Polytope of Type {4,54,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,54,4}*1728c
if this polytope has a name.
Group : SmallGroup(1728,11358)
Rank : 4
Schlafli Type : {4,54,4}
Number of vertices, edges, etc : 4, 108, 108, 4
Order of s0s1s2s3 : 108
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,54,2}*864b
   3-fold quotients : {4,18,4}*576c
   4-fold quotients : {4,27,2}*432
   6-fold quotients : {4,18,2}*288b
   9-fold quotients : {4,6,4}*192c
   12-fold quotients : {4,9,2}*144
   18-fold quotients : {4,6,2}*96c
   36-fold quotients : {4,3,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,  3)(  2,  4)(  5,  7)(  6,  8)(  9, 11)( 10, 12)( 13, 15)( 14, 16)
( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)( 30, 32)
( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)( 46, 48)
( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)( 62, 64)
( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)( 78, 80)
( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)( 94, 96)
( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)
(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)(126,128)
(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)(142,144)
(145,147)(146,148)(149,151)(150,152)(153,155)(154,156)(157,159)(158,160)
(161,163)(162,164)(165,167)(166,168)(169,171)(170,172)(173,175)(174,176)
(177,179)(178,180)(181,183)(182,184)(185,187)(186,188)(189,191)(190,192)
(193,195)(194,196)(197,199)(198,200)(201,203)(202,204)(205,207)(206,208)
(209,211)(210,212)(213,215)(214,216)(217,219)(218,220)(221,223)(222,224)
(225,227)(226,228)(229,231)(230,232)(233,235)(234,236)(237,239)(238,240)
(241,243)(242,244)(245,247)(246,248)(249,251)(250,252)(253,255)(254,256)
(257,259)(258,260)(261,263)(262,264)(265,267)(266,268)(269,271)(270,272)
(273,275)(274,276)(277,279)(278,280)(281,283)(282,284)(285,287)(286,288)
(289,291)(290,292)(293,295)(294,296)(297,299)(298,300)(301,303)(302,304)
(305,307)(306,308)(309,311)(310,312)(313,315)(314,316)(317,319)(318,320)
(321,323)(322,324)(325,327)(326,328)(329,331)(330,332)(333,335)(334,336)
(337,339)(338,340)(341,343)(342,344)(345,347)(346,348)(349,351)(350,352)
(353,355)(354,356)(357,359)(358,360)(361,363)(362,364)(365,367)(366,368)
(369,371)(370,372)(373,375)(374,376)(377,379)(378,380)(381,383)(382,384)
(385,387)(386,388)(389,391)(390,392)(393,395)(394,396)(397,399)(398,400)
(401,403)(402,404)(405,407)(406,408)(409,411)(410,412)(413,415)(414,416)
(417,419)(418,420)(421,423)(422,424)(425,427)(426,428)(429,431)(430,432);;
s1 := (  3,  4)(  5,  9)(  6, 10)(  7, 12)(  8, 11)( 13, 33)( 14, 34)( 15, 36)
( 16, 35)( 17, 29)( 18, 30)( 19, 32)( 20, 31)( 21, 25)( 22, 26)( 23, 28)
( 24, 27)( 37,105)( 38,106)( 39,108)( 40,107)( 41,101)( 42,102)( 43,104)
( 44,103)( 45, 97)( 46, 98)( 47,100)( 48, 99)( 49, 93)( 50, 94)( 51, 96)
( 52, 95)( 53, 89)( 54, 90)( 55, 92)( 56, 91)( 57, 85)( 58, 86)( 59, 88)
( 60, 87)( 61, 81)( 62, 82)( 63, 84)( 64, 83)( 65, 77)( 66, 78)( 67, 80)
( 68, 79)( 69, 73)( 70, 74)( 71, 76)( 72, 75)(111,112)(113,117)(114,118)
(115,120)(116,119)(121,141)(122,142)(123,144)(124,143)(125,137)(126,138)
(127,140)(128,139)(129,133)(130,134)(131,136)(132,135)(145,213)(146,214)
(147,216)(148,215)(149,209)(150,210)(151,212)(152,211)(153,205)(154,206)
(155,208)(156,207)(157,201)(158,202)(159,204)(160,203)(161,197)(162,198)
(163,200)(164,199)(165,193)(166,194)(167,196)(168,195)(169,189)(170,190)
(171,192)(172,191)(173,185)(174,186)(175,188)(176,187)(177,181)(178,182)
(179,184)(180,183)(219,220)(221,225)(222,226)(223,228)(224,227)(229,249)
(230,250)(231,252)(232,251)(233,245)(234,246)(235,248)(236,247)(237,241)
(238,242)(239,244)(240,243)(253,321)(254,322)(255,324)(256,323)(257,317)
(258,318)(259,320)(260,319)(261,313)(262,314)(263,316)(264,315)(265,309)
(266,310)(267,312)(268,311)(269,305)(270,306)(271,308)(272,307)(273,301)
(274,302)(275,304)(276,303)(277,297)(278,298)(279,300)(280,299)(281,293)
(282,294)(283,296)(284,295)(285,289)(286,290)(287,292)(288,291)(327,328)
(329,333)(330,334)(331,336)(332,335)(337,357)(338,358)(339,360)(340,359)
(341,353)(342,354)(343,356)(344,355)(345,349)(346,350)(347,352)(348,351)
(361,429)(362,430)(363,432)(364,431)(365,425)(366,426)(367,428)(368,427)
(369,421)(370,422)(371,424)(372,423)(373,417)(374,418)(375,420)(376,419)
(377,413)(378,414)(379,416)(380,415)(381,409)(382,410)(383,412)(384,411)
(385,405)(386,406)(387,408)(388,407)(389,401)(390,402)(391,404)(392,403)
(393,397)(394,398)(395,400)(396,399);;
s2 := (  1, 37)(  2, 40)(  3, 39)(  4, 38)(  5, 45)(  6, 48)(  7, 47)(  8, 46)
(  9, 41)( 10, 44)( 11, 43)( 12, 42)( 13, 69)( 14, 72)( 15, 71)( 16, 70)
( 17, 65)( 18, 68)( 19, 67)( 20, 66)( 21, 61)( 22, 64)( 23, 63)( 24, 62)
( 25, 57)( 26, 60)( 27, 59)( 28, 58)( 29, 53)( 30, 56)( 31, 55)( 32, 54)
( 33, 49)( 34, 52)( 35, 51)( 36, 50)( 73,105)( 74,108)( 75,107)( 76,106)
( 77,101)( 78,104)( 79,103)( 80,102)( 81, 97)( 82,100)( 83, 99)( 84, 98)
( 85, 93)( 86, 96)( 87, 95)( 88, 94)( 90, 92)(109,145)(110,148)(111,147)
(112,146)(113,153)(114,156)(115,155)(116,154)(117,149)(118,152)(119,151)
(120,150)(121,177)(122,180)(123,179)(124,178)(125,173)(126,176)(127,175)
(128,174)(129,169)(130,172)(131,171)(132,170)(133,165)(134,168)(135,167)
(136,166)(137,161)(138,164)(139,163)(140,162)(141,157)(142,160)(143,159)
(144,158)(181,213)(182,216)(183,215)(184,214)(185,209)(186,212)(187,211)
(188,210)(189,205)(190,208)(191,207)(192,206)(193,201)(194,204)(195,203)
(196,202)(198,200)(217,361)(218,364)(219,363)(220,362)(221,369)(222,372)
(223,371)(224,370)(225,365)(226,368)(227,367)(228,366)(229,393)(230,396)
(231,395)(232,394)(233,389)(234,392)(235,391)(236,390)(237,385)(238,388)
(239,387)(240,386)(241,381)(242,384)(243,383)(244,382)(245,377)(246,380)
(247,379)(248,378)(249,373)(250,376)(251,375)(252,374)(253,325)(254,328)
(255,327)(256,326)(257,333)(258,336)(259,335)(260,334)(261,329)(262,332)
(263,331)(264,330)(265,357)(266,360)(267,359)(268,358)(269,353)(270,356)
(271,355)(272,354)(273,349)(274,352)(275,351)(276,350)(277,345)(278,348)
(279,347)(280,346)(281,341)(282,344)(283,343)(284,342)(285,337)(286,340)
(287,339)(288,338)(289,429)(290,432)(291,431)(292,430)(293,425)(294,428)
(295,427)(296,426)(297,421)(298,424)(299,423)(300,422)(301,417)(302,420)
(303,419)(304,418)(305,413)(306,416)(307,415)(308,414)(309,409)(310,412)
(311,411)(312,410)(313,405)(314,408)(315,407)(316,406)(317,401)(318,404)
(319,403)(320,402)(321,397)(322,400)(323,399)(324,398);;
s3 := (  1,217)(  2,218)(  3,219)(  4,220)(  5,221)(  6,222)(  7,223)(  8,224)
(  9,225)( 10,226)( 11,227)( 12,228)( 13,229)( 14,230)( 15,231)( 16,232)
( 17,233)( 18,234)( 19,235)( 20,236)( 21,237)( 22,238)( 23,239)( 24,240)
( 25,241)( 26,242)( 27,243)( 28,244)( 29,245)( 30,246)( 31,247)( 32,248)
( 33,249)( 34,250)( 35,251)( 36,252)( 37,253)( 38,254)( 39,255)( 40,256)
( 41,257)( 42,258)( 43,259)( 44,260)( 45,261)( 46,262)( 47,263)( 48,264)
( 49,265)( 50,266)( 51,267)( 52,268)( 53,269)( 54,270)( 55,271)( 56,272)
( 57,273)( 58,274)( 59,275)( 60,276)( 61,277)( 62,278)( 63,279)( 64,280)
( 65,281)( 66,282)( 67,283)( 68,284)( 69,285)( 70,286)( 71,287)( 72,288)
( 73,289)( 74,290)( 75,291)( 76,292)( 77,293)( 78,294)( 79,295)( 80,296)
( 81,297)( 82,298)( 83,299)( 84,300)( 85,301)( 86,302)( 87,303)( 88,304)
( 89,305)( 90,306)( 91,307)( 92,308)( 93,309)( 94,310)( 95,311)( 96,312)
( 97,313)( 98,314)( 99,315)(100,316)(101,317)(102,318)(103,319)(104,320)
(105,321)(106,322)(107,323)(108,324)(109,325)(110,326)(111,327)(112,328)
(113,329)(114,330)(115,331)(116,332)(117,333)(118,334)(119,335)(120,336)
(121,337)(122,338)(123,339)(124,340)(125,341)(126,342)(127,343)(128,344)
(129,345)(130,346)(131,347)(132,348)(133,349)(134,350)(135,351)(136,352)
(137,353)(138,354)(139,355)(140,356)(141,357)(142,358)(143,359)(144,360)
(145,361)(146,362)(147,363)(148,364)(149,365)(150,366)(151,367)(152,368)
(153,369)(154,370)(155,371)(156,372)(157,373)(158,374)(159,375)(160,376)
(161,377)(162,378)(163,379)(164,380)(165,381)(166,382)(167,383)(168,384)
(169,385)(170,386)(171,387)(172,388)(173,389)(174,390)(175,391)(176,392)
(177,393)(178,394)(179,395)(180,396)(181,397)(182,398)(183,399)(184,400)
(185,401)(186,402)(187,403)(188,404)(189,405)(190,406)(191,407)(192,408)
(193,409)(194,410)(195,411)(196,412)(197,413)(198,414)(199,415)(200,416)
(201,417)(202,418)(203,419)(204,420)(205,421)(206,422)(207,423)(208,424)
(209,425)(210,426)(211,427)(212,428)(213,429)(214,430)(215,431)(216,432);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s2*s1*s0*s1*s2*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(432)!(  1,  3)(  2,  4)(  5,  7)(  6,  8)(  9, 11)( 10, 12)( 13, 15)
( 14, 16)( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)
( 30, 32)( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)
( 46, 48)( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)
( 62, 64)( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)
( 78, 80)( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)
( 94, 96)( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)
(110,112)(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)
(126,128)(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)
(142,144)(145,147)(146,148)(149,151)(150,152)(153,155)(154,156)(157,159)
(158,160)(161,163)(162,164)(165,167)(166,168)(169,171)(170,172)(173,175)
(174,176)(177,179)(178,180)(181,183)(182,184)(185,187)(186,188)(189,191)
(190,192)(193,195)(194,196)(197,199)(198,200)(201,203)(202,204)(205,207)
(206,208)(209,211)(210,212)(213,215)(214,216)(217,219)(218,220)(221,223)
(222,224)(225,227)(226,228)(229,231)(230,232)(233,235)(234,236)(237,239)
(238,240)(241,243)(242,244)(245,247)(246,248)(249,251)(250,252)(253,255)
(254,256)(257,259)(258,260)(261,263)(262,264)(265,267)(266,268)(269,271)
(270,272)(273,275)(274,276)(277,279)(278,280)(281,283)(282,284)(285,287)
(286,288)(289,291)(290,292)(293,295)(294,296)(297,299)(298,300)(301,303)
(302,304)(305,307)(306,308)(309,311)(310,312)(313,315)(314,316)(317,319)
(318,320)(321,323)(322,324)(325,327)(326,328)(329,331)(330,332)(333,335)
(334,336)(337,339)(338,340)(341,343)(342,344)(345,347)(346,348)(349,351)
(350,352)(353,355)(354,356)(357,359)(358,360)(361,363)(362,364)(365,367)
(366,368)(369,371)(370,372)(373,375)(374,376)(377,379)(378,380)(381,383)
(382,384)(385,387)(386,388)(389,391)(390,392)(393,395)(394,396)(397,399)
(398,400)(401,403)(402,404)(405,407)(406,408)(409,411)(410,412)(413,415)
(414,416)(417,419)(418,420)(421,423)(422,424)(425,427)(426,428)(429,431)
(430,432);
s1 := Sym(432)!(  3,  4)(  5,  9)(  6, 10)(  7, 12)(  8, 11)( 13, 33)( 14, 34)
( 15, 36)( 16, 35)( 17, 29)( 18, 30)( 19, 32)( 20, 31)( 21, 25)( 22, 26)
( 23, 28)( 24, 27)( 37,105)( 38,106)( 39,108)( 40,107)( 41,101)( 42,102)
( 43,104)( 44,103)( 45, 97)( 46, 98)( 47,100)( 48, 99)( 49, 93)( 50, 94)
( 51, 96)( 52, 95)( 53, 89)( 54, 90)( 55, 92)( 56, 91)( 57, 85)( 58, 86)
( 59, 88)( 60, 87)( 61, 81)( 62, 82)( 63, 84)( 64, 83)( 65, 77)( 66, 78)
( 67, 80)( 68, 79)( 69, 73)( 70, 74)( 71, 76)( 72, 75)(111,112)(113,117)
(114,118)(115,120)(116,119)(121,141)(122,142)(123,144)(124,143)(125,137)
(126,138)(127,140)(128,139)(129,133)(130,134)(131,136)(132,135)(145,213)
(146,214)(147,216)(148,215)(149,209)(150,210)(151,212)(152,211)(153,205)
(154,206)(155,208)(156,207)(157,201)(158,202)(159,204)(160,203)(161,197)
(162,198)(163,200)(164,199)(165,193)(166,194)(167,196)(168,195)(169,189)
(170,190)(171,192)(172,191)(173,185)(174,186)(175,188)(176,187)(177,181)
(178,182)(179,184)(180,183)(219,220)(221,225)(222,226)(223,228)(224,227)
(229,249)(230,250)(231,252)(232,251)(233,245)(234,246)(235,248)(236,247)
(237,241)(238,242)(239,244)(240,243)(253,321)(254,322)(255,324)(256,323)
(257,317)(258,318)(259,320)(260,319)(261,313)(262,314)(263,316)(264,315)
(265,309)(266,310)(267,312)(268,311)(269,305)(270,306)(271,308)(272,307)
(273,301)(274,302)(275,304)(276,303)(277,297)(278,298)(279,300)(280,299)
(281,293)(282,294)(283,296)(284,295)(285,289)(286,290)(287,292)(288,291)
(327,328)(329,333)(330,334)(331,336)(332,335)(337,357)(338,358)(339,360)
(340,359)(341,353)(342,354)(343,356)(344,355)(345,349)(346,350)(347,352)
(348,351)(361,429)(362,430)(363,432)(364,431)(365,425)(366,426)(367,428)
(368,427)(369,421)(370,422)(371,424)(372,423)(373,417)(374,418)(375,420)
(376,419)(377,413)(378,414)(379,416)(380,415)(381,409)(382,410)(383,412)
(384,411)(385,405)(386,406)(387,408)(388,407)(389,401)(390,402)(391,404)
(392,403)(393,397)(394,398)(395,400)(396,399);
s2 := Sym(432)!(  1, 37)(  2, 40)(  3, 39)(  4, 38)(  5, 45)(  6, 48)(  7, 47)
(  8, 46)(  9, 41)( 10, 44)( 11, 43)( 12, 42)( 13, 69)( 14, 72)( 15, 71)
( 16, 70)( 17, 65)( 18, 68)( 19, 67)( 20, 66)( 21, 61)( 22, 64)( 23, 63)
( 24, 62)( 25, 57)( 26, 60)( 27, 59)( 28, 58)( 29, 53)( 30, 56)( 31, 55)
( 32, 54)( 33, 49)( 34, 52)( 35, 51)( 36, 50)( 73,105)( 74,108)( 75,107)
( 76,106)( 77,101)( 78,104)( 79,103)( 80,102)( 81, 97)( 82,100)( 83, 99)
( 84, 98)( 85, 93)( 86, 96)( 87, 95)( 88, 94)( 90, 92)(109,145)(110,148)
(111,147)(112,146)(113,153)(114,156)(115,155)(116,154)(117,149)(118,152)
(119,151)(120,150)(121,177)(122,180)(123,179)(124,178)(125,173)(126,176)
(127,175)(128,174)(129,169)(130,172)(131,171)(132,170)(133,165)(134,168)
(135,167)(136,166)(137,161)(138,164)(139,163)(140,162)(141,157)(142,160)
(143,159)(144,158)(181,213)(182,216)(183,215)(184,214)(185,209)(186,212)
(187,211)(188,210)(189,205)(190,208)(191,207)(192,206)(193,201)(194,204)
(195,203)(196,202)(198,200)(217,361)(218,364)(219,363)(220,362)(221,369)
(222,372)(223,371)(224,370)(225,365)(226,368)(227,367)(228,366)(229,393)
(230,396)(231,395)(232,394)(233,389)(234,392)(235,391)(236,390)(237,385)
(238,388)(239,387)(240,386)(241,381)(242,384)(243,383)(244,382)(245,377)
(246,380)(247,379)(248,378)(249,373)(250,376)(251,375)(252,374)(253,325)
(254,328)(255,327)(256,326)(257,333)(258,336)(259,335)(260,334)(261,329)
(262,332)(263,331)(264,330)(265,357)(266,360)(267,359)(268,358)(269,353)
(270,356)(271,355)(272,354)(273,349)(274,352)(275,351)(276,350)(277,345)
(278,348)(279,347)(280,346)(281,341)(282,344)(283,343)(284,342)(285,337)
(286,340)(287,339)(288,338)(289,429)(290,432)(291,431)(292,430)(293,425)
(294,428)(295,427)(296,426)(297,421)(298,424)(299,423)(300,422)(301,417)
(302,420)(303,419)(304,418)(305,413)(306,416)(307,415)(308,414)(309,409)
(310,412)(311,411)(312,410)(313,405)(314,408)(315,407)(316,406)(317,401)
(318,404)(319,403)(320,402)(321,397)(322,400)(323,399)(324,398);
s3 := Sym(432)!(  1,217)(  2,218)(  3,219)(  4,220)(  5,221)(  6,222)(  7,223)
(  8,224)(  9,225)( 10,226)( 11,227)( 12,228)( 13,229)( 14,230)( 15,231)
( 16,232)( 17,233)( 18,234)( 19,235)( 20,236)( 21,237)( 22,238)( 23,239)
( 24,240)( 25,241)( 26,242)( 27,243)( 28,244)( 29,245)( 30,246)( 31,247)
( 32,248)( 33,249)( 34,250)( 35,251)( 36,252)( 37,253)( 38,254)( 39,255)
( 40,256)( 41,257)( 42,258)( 43,259)( 44,260)( 45,261)( 46,262)( 47,263)
( 48,264)( 49,265)( 50,266)( 51,267)( 52,268)( 53,269)( 54,270)( 55,271)
( 56,272)( 57,273)( 58,274)( 59,275)( 60,276)( 61,277)( 62,278)( 63,279)
( 64,280)( 65,281)( 66,282)( 67,283)( 68,284)( 69,285)( 70,286)( 71,287)
( 72,288)( 73,289)( 74,290)( 75,291)( 76,292)( 77,293)( 78,294)( 79,295)
( 80,296)( 81,297)( 82,298)( 83,299)( 84,300)( 85,301)( 86,302)( 87,303)
( 88,304)( 89,305)( 90,306)( 91,307)( 92,308)( 93,309)( 94,310)( 95,311)
( 96,312)( 97,313)( 98,314)( 99,315)(100,316)(101,317)(102,318)(103,319)
(104,320)(105,321)(106,322)(107,323)(108,324)(109,325)(110,326)(111,327)
(112,328)(113,329)(114,330)(115,331)(116,332)(117,333)(118,334)(119,335)
(120,336)(121,337)(122,338)(123,339)(124,340)(125,341)(126,342)(127,343)
(128,344)(129,345)(130,346)(131,347)(132,348)(133,349)(134,350)(135,351)
(136,352)(137,353)(138,354)(139,355)(140,356)(141,357)(142,358)(143,359)
(144,360)(145,361)(146,362)(147,363)(148,364)(149,365)(150,366)(151,367)
(152,368)(153,369)(154,370)(155,371)(156,372)(157,373)(158,374)(159,375)
(160,376)(161,377)(162,378)(163,379)(164,380)(165,381)(166,382)(167,383)
(168,384)(169,385)(170,386)(171,387)(172,388)(173,389)(174,390)(175,391)
(176,392)(177,393)(178,394)(179,395)(180,396)(181,397)(182,398)(183,399)
(184,400)(185,401)(186,402)(187,403)(188,404)(189,405)(190,406)(191,407)
(192,408)(193,409)(194,410)(195,411)(196,412)(197,413)(198,414)(199,415)
(200,416)(201,417)(202,418)(203,419)(204,420)(205,421)(206,422)(207,423)
(208,424)(209,425)(210,426)(211,427)(212,428)(213,429)(214,430)(215,431)
(216,432);
poly := sub<Sym(432)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope