Polytope of Type {4,24}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,24}*1728a
if this polytope has a name.
Group : SmallGroup(1728,12703)
Rank : 3
Schlafli Type : {4,24}
Number of vertices, edges, etc : 36, 432, 216
Order of s0s1s2 : 24
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,12}*864b
   3-fold quotients : {4,24}*576a
   4-fold quotients : {4,6}*432a
   6-fold quotients : {4,12}*288
   8-fold quotients : {4,6}*216
   12-fold quotients : {4,6}*144
   24-fold quotients : {4,6}*72
   27-fold quotients : {4,8}*64a
   54-fold quotients : {4,4}*32, {2,8}*32
   108-fold quotients : {2,4}*16, {4,2}*16
   216-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  3)(  4, 22)(  5, 24)(  6, 23)(  7, 18)(  8, 17)(  9, 16)( 10, 19)
( 11, 21)( 12, 20)( 14, 15)( 25, 27)( 29, 30)( 31, 49)( 32, 51)( 33, 50)
( 34, 45)( 35, 44)( 36, 43)( 37, 46)( 38, 48)( 39, 47)( 41, 42)( 52, 54)
( 56, 57)( 58, 76)( 59, 78)( 60, 77)( 61, 72)( 62, 71)( 63, 70)( 64, 73)
( 65, 75)( 66, 74)( 68, 69)( 79, 81)( 83, 84)( 85,103)( 86,105)( 87,104)
( 88, 99)( 89, 98)( 90, 97)( 91,100)( 92,102)( 93,101)( 95, 96)(106,108)
(110,111)(112,130)(113,132)(114,131)(115,126)(116,125)(117,124)(118,127)
(119,129)(120,128)(122,123)(133,135)(137,138)(139,157)(140,159)(141,158)
(142,153)(143,152)(144,151)(145,154)(146,156)(147,155)(149,150)(160,162)
(164,165)(166,184)(167,186)(168,185)(169,180)(170,179)(171,178)(172,181)
(173,183)(174,182)(176,177)(187,189)(191,192)(193,211)(194,213)(195,212)
(196,207)(197,206)(198,205)(199,208)(200,210)(201,209)(203,204)(214,216);;
s1 := (  2,  3)(  4,  5)(  7,  9)( 10, 25)( 11, 27)( 12, 26)( 13, 20)( 14, 19)
( 15, 21)( 16, 24)( 17, 23)( 18, 22)( 29, 30)( 31, 32)( 34, 36)( 37, 52)
( 38, 54)( 39, 53)( 40, 47)( 41, 46)( 42, 48)( 43, 51)( 44, 50)( 45, 49)
( 55, 82)( 56, 84)( 57, 83)( 58, 86)( 59, 85)( 60, 87)( 61, 90)( 62, 89)
( 63, 88)( 64,106)( 65,108)( 66,107)( 67,101)( 68,100)( 69,102)( 70,105)
( 71,104)( 72,103)( 73, 95)( 74, 94)( 75, 96)( 76, 99)( 77, 98)( 78, 97)
( 79, 91)( 80, 93)( 81, 92)(109,163)(110,165)(111,164)(112,167)(113,166)
(114,168)(115,171)(116,170)(117,169)(118,187)(119,189)(120,188)(121,182)
(122,181)(123,183)(124,186)(125,185)(126,184)(127,176)(128,175)(129,177)
(130,180)(131,179)(132,178)(133,172)(134,174)(135,173)(136,190)(137,192)
(138,191)(139,194)(140,193)(141,195)(142,198)(143,197)(144,196)(145,214)
(146,216)(147,215)(148,209)(149,208)(150,210)(151,213)(152,212)(153,211)
(154,203)(155,202)(156,204)(157,207)(158,206)(159,205)(160,199)(161,201)
(162,200);;
s2 := (  1,121)(  2,122)(  3,123)(  4,119)(  5,120)(  6,118)(  7,126)(  8,124)
(  9,125)( 10,114)( 11,112)( 12,113)( 13,109)( 14,110)( 15,111)( 16,116)
( 17,117)( 18,115)( 19,131)( 20,132)( 21,130)( 22,129)( 23,127)( 24,128)
( 25,133)( 26,134)( 27,135)( 28,148)( 29,149)( 30,150)( 31,146)( 32,147)
( 33,145)( 34,153)( 35,151)( 36,152)( 37,141)( 38,139)( 39,140)( 40,136)
( 41,137)( 42,138)( 43,143)( 44,144)( 45,142)( 46,158)( 47,159)( 48,157)
( 49,156)( 50,154)( 51,155)( 52,160)( 53,161)( 54,162)( 55,202)( 56,203)
( 57,204)( 58,200)( 59,201)( 60,199)( 61,207)( 62,205)( 63,206)( 64,195)
( 65,193)( 66,194)( 67,190)( 68,191)( 69,192)( 70,197)( 71,198)( 72,196)
( 73,212)( 74,213)( 75,211)( 76,210)( 77,208)( 78,209)( 79,214)( 80,215)
( 81,216)( 82,175)( 83,176)( 84,177)( 85,173)( 86,174)( 87,172)( 88,180)
( 89,178)( 90,179)( 91,168)( 92,166)( 93,167)( 94,163)( 95,164)( 96,165)
( 97,170)( 98,171)( 99,169)(100,185)(101,186)(102,184)(103,183)(104,181)
(105,182)(106,187)(107,188)(108,189);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(216)!(  2,  3)(  4, 22)(  5, 24)(  6, 23)(  7, 18)(  8, 17)(  9, 16)
( 10, 19)( 11, 21)( 12, 20)( 14, 15)( 25, 27)( 29, 30)( 31, 49)( 32, 51)
( 33, 50)( 34, 45)( 35, 44)( 36, 43)( 37, 46)( 38, 48)( 39, 47)( 41, 42)
( 52, 54)( 56, 57)( 58, 76)( 59, 78)( 60, 77)( 61, 72)( 62, 71)( 63, 70)
( 64, 73)( 65, 75)( 66, 74)( 68, 69)( 79, 81)( 83, 84)( 85,103)( 86,105)
( 87,104)( 88, 99)( 89, 98)( 90, 97)( 91,100)( 92,102)( 93,101)( 95, 96)
(106,108)(110,111)(112,130)(113,132)(114,131)(115,126)(116,125)(117,124)
(118,127)(119,129)(120,128)(122,123)(133,135)(137,138)(139,157)(140,159)
(141,158)(142,153)(143,152)(144,151)(145,154)(146,156)(147,155)(149,150)
(160,162)(164,165)(166,184)(167,186)(168,185)(169,180)(170,179)(171,178)
(172,181)(173,183)(174,182)(176,177)(187,189)(191,192)(193,211)(194,213)
(195,212)(196,207)(197,206)(198,205)(199,208)(200,210)(201,209)(203,204)
(214,216);
s1 := Sym(216)!(  2,  3)(  4,  5)(  7,  9)( 10, 25)( 11, 27)( 12, 26)( 13, 20)
( 14, 19)( 15, 21)( 16, 24)( 17, 23)( 18, 22)( 29, 30)( 31, 32)( 34, 36)
( 37, 52)( 38, 54)( 39, 53)( 40, 47)( 41, 46)( 42, 48)( 43, 51)( 44, 50)
( 45, 49)( 55, 82)( 56, 84)( 57, 83)( 58, 86)( 59, 85)( 60, 87)( 61, 90)
( 62, 89)( 63, 88)( 64,106)( 65,108)( 66,107)( 67,101)( 68,100)( 69,102)
( 70,105)( 71,104)( 72,103)( 73, 95)( 74, 94)( 75, 96)( 76, 99)( 77, 98)
( 78, 97)( 79, 91)( 80, 93)( 81, 92)(109,163)(110,165)(111,164)(112,167)
(113,166)(114,168)(115,171)(116,170)(117,169)(118,187)(119,189)(120,188)
(121,182)(122,181)(123,183)(124,186)(125,185)(126,184)(127,176)(128,175)
(129,177)(130,180)(131,179)(132,178)(133,172)(134,174)(135,173)(136,190)
(137,192)(138,191)(139,194)(140,193)(141,195)(142,198)(143,197)(144,196)
(145,214)(146,216)(147,215)(148,209)(149,208)(150,210)(151,213)(152,212)
(153,211)(154,203)(155,202)(156,204)(157,207)(158,206)(159,205)(160,199)
(161,201)(162,200);
s2 := Sym(216)!(  1,121)(  2,122)(  3,123)(  4,119)(  5,120)(  6,118)(  7,126)
(  8,124)(  9,125)( 10,114)( 11,112)( 12,113)( 13,109)( 14,110)( 15,111)
( 16,116)( 17,117)( 18,115)( 19,131)( 20,132)( 21,130)( 22,129)( 23,127)
( 24,128)( 25,133)( 26,134)( 27,135)( 28,148)( 29,149)( 30,150)( 31,146)
( 32,147)( 33,145)( 34,153)( 35,151)( 36,152)( 37,141)( 38,139)( 39,140)
( 40,136)( 41,137)( 42,138)( 43,143)( 44,144)( 45,142)( 46,158)( 47,159)
( 48,157)( 49,156)( 50,154)( 51,155)( 52,160)( 53,161)( 54,162)( 55,202)
( 56,203)( 57,204)( 58,200)( 59,201)( 60,199)( 61,207)( 62,205)( 63,206)
( 64,195)( 65,193)( 66,194)( 67,190)( 68,191)( 69,192)( 70,197)( 71,198)
( 72,196)( 73,212)( 74,213)( 75,211)( 76,210)( 77,208)( 78,209)( 79,214)
( 80,215)( 81,216)( 82,175)( 83,176)( 84,177)( 85,173)( 86,174)( 87,172)
( 88,180)( 89,178)( 90,179)( 91,168)( 92,166)( 93,167)( 94,163)( 95,164)
( 96,165)( 97,170)( 98,171)( 99,169)(100,185)(101,186)(102,184)(103,183)
(104,181)(105,182)(106,187)(107,188)(108,189);
poly := sub<Sym(216)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1 >; 
 
References : None.
to this polytope