Polytope of Type {9,6,2,8}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {9,6,2,8}*1728
if this polytope has a name.
Group : SmallGroup(1728,15957)
Rank : 5
Schlafli Type : {9,6,2,8}
Number of vertices, edges, etc : 9, 27, 6, 8, 8
Order of s0s1s2s3s4 : 72
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {9,6,2,4}*864
   3-fold quotients : {9,2,2,8}*576, {3,6,2,8}*576
   4-fold quotients : {9,6,2,2}*432
   6-fold quotients : {9,2,2,4}*288, {3,6,2,4}*288
   9-fold quotients : {3,2,2,8}*192
   12-fold quotients : {9,2,2,2}*144, {3,6,2,2}*144
   18-fold quotients : {3,2,2,4}*96
   36-fold quotients : {3,2,2,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 6, 9)( 7,11)( 8,10)(12,15)(13,17)(14,16)(18,21)(19,23)
(20,22)(24,27)(25,26);;
s1 := ( 1, 7)( 2, 4)( 3,13)( 5, 8)( 6,10)( 9,19)(11,14)(12,16)(15,24)(17,20)
(18,22)(21,26)(23,25);;
s2 := ( 4, 5)( 7, 8)(10,11)(13,14)(16,17)(19,20)(22,23)(24,25)(26,27);;
s3 := (29,30)(31,32)(33,34);;
s4 := (28,29)(30,31)(32,33)(34,35);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(35)!( 2, 3)( 4, 5)( 6, 9)( 7,11)( 8,10)(12,15)(13,17)(14,16)(18,21)
(19,23)(20,22)(24,27)(25,26);
s1 := Sym(35)!( 1, 7)( 2, 4)( 3,13)( 5, 8)( 6,10)( 9,19)(11,14)(12,16)(15,24)
(17,20)(18,22)(21,26)(23,25);
s2 := Sym(35)!( 4, 5)( 7, 8)(10,11)(13,14)(16,17)(19,20)(22,23)(24,25)(26,27);
s3 := Sym(35)!(29,30)(31,32)(33,34);
s4 := Sym(35)!(28,29)(30,31)(32,33)(34,35);
poly := sub<Sym(35)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope