Polytope of Type {2,27,4,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,27,4,2}*1728
if this polytope has a name.
Group : SmallGroup(1728,20782)
Rank : 5
Schlafli Type : {2,27,4,2}
Number of vertices, edges, etc : 2, 54, 108, 8, 2
Order of s0s1s2s3s4 : 54
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,27,4,2}*864
   3-fold quotients : {2,9,4,2}*576
   4-fold quotients : {2,27,2,2}*432
   6-fold quotients : {2,9,4,2}*288
   9-fold quotients : {2,3,4,2}*192
   12-fold quotients : {2,9,2,2}*144
   18-fold quotients : {2,3,4,2}*96
   36-fold quotients : {2,3,2,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4,  5)(  7, 11)(  8, 13)(  9, 12)( 10, 14)( 15, 31)( 16, 33)( 17, 32)
( 18, 34)( 19, 27)( 20, 29)( 21, 28)( 22, 30)( 23, 35)( 24, 37)( 25, 36)
( 26, 38)( 39, 87)( 40, 89)( 41, 88)( 42, 90)( 43, 95)( 44, 97)( 45, 96)
( 46, 98)( 47, 91)( 48, 93)( 49, 92)( 50, 94)( 51, 75)( 52, 77)( 53, 76)
( 54, 78)( 55, 83)( 56, 85)( 57, 84)( 58, 86)( 59, 79)( 60, 81)( 61, 80)
( 62, 82)( 63,103)( 64,105)( 65,104)( 66,106)( 67, 99)( 68,101)( 69,100)
( 70,102)( 71,107)( 72,109)( 73,108)( 74,110)(112,113)(115,119)(116,121)
(117,120)(118,122)(123,139)(124,141)(125,140)(126,142)(127,135)(128,137)
(129,136)(130,138)(131,143)(132,145)(133,144)(134,146)(147,195)(148,197)
(149,196)(150,198)(151,203)(152,205)(153,204)(154,206)(155,199)(156,201)
(157,200)(158,202)(159,183)(160,185)(161,184)(162,186)(163,191)(164,193)
(165,192)(166,194)(167,187)(168,189)(169,188)(170,190)(171,211)(172,213)
(173,212)(174,214)(175,207)(176,209)(177,208)(178,210)(179,215)(180,217)
(181,216)(182,218);;
s2 := (  3, 39)(  4, 40)(  5, 42)(  6, 41)(  7, 47)(  8, 48)(  9, 50)( 10, 49)
( 11, 43)( 12, 44)( 13, 46)( 14, 45)( 15, 67)( 16, 68)( 17, 70)( 18, 69)
( 19, 63)( 20, 64)( 21, 66)( 22, 65)( 23, 71)( 24, 72)( 25, 74)( 26, 73)
( 27, 55)( 28, 56)( 29, 58)( 30, 57)( 31, 51)( 32, 52)( 33, 54)( 34, 53)
( 35, 59)( 36, 60)( 37, 62)( 38, 61)( 75, 87)( 76, 88)( 77, 90)( 78, 89)
( 79, 95)( 80, 96)( 81, 98)( 82, 97)( 83, 91)( 84, 92)( 85, 94)( 86, 93)
( 99,103)(100,104)(101,106)(102,105)(109,110)(111,147)(112,148)(113,150)
(114,149)(115,155)(116,156)(117,158)(118,157)(119,151)(120,152)(121,154)
(122,153)(123,175)(124,176)(125,178)(126,177)(127,171)(128,172)(129,174)
(130,173)(131,179)(132,180)(133,182)(134,181)(135,163)(136,164)(137,166)
(138,165)(139,159)(140,160)(141,162)(142,161)(143,167)(144,168)(145,170)
(146,169)(183,195)(184,196)(185,198)(186,197)(187,203)(188,204)(189,206)
(190,205)(191,199)(192,200)(193,202)(194,201)(207,211)(208,212)(209,214)
(210,213)(217,218);;
s3 := (  3,114)(  4,113)(  5,112)(  6,111)(  7,118)(  8,117)(  9,116)( 10,115)
( 11,122)( 12,121)( 13,120)( 14,119)( 15,126)( 16,125)( 17,124)( 18,123)
( 19,130)( 20,129)( 21,128)( 22,127)( 23,134)( 24,133)( 25,132)( 26,131)
( 27,138)( 28,137)( 29,136)( 30,135)( 31,142)( 32,141)( 33,140)( 34,139)
( 35,146)( 36,145)( 37,144)( 38,143)( 39,150)( 40,149)( 41,148)( 42,147)
( 43,154)( 44,153)( 45,152)( 46,151)( 47,158)( 48,157)( 49,156)( 50,155)
( 51,162)( 52,161)( 53,160)( 54,159)( 55,166)( 56,165)( 57,164)( 58,163)
( 59,170)( 60,169)( 61,168)( 62,167)( 63,174)( 64,173)( 65,172)( 66,171)
( 67,178)( 68,177)( 69,176)( 70,175)( 71,182)( 72,181)( 73,180)( 74,179)
( 75,186)( 76,185)( 77,184)( 78,183)( 79,190)( 80,189)( 81,188)( 82,187)
( 83,194)( 84,193)( 85,192)( 86,191)( 87,198)( 88,197)( 89,196)( 90,195)
( 91,202)( 92,201)( 93,200)( 94,199)( 95,206)( 96,205)( 97,204)( 98,203)
( 99,210)(100,209)(101,208)(102,207)(103,214)(104,213)(105,212)(106,211)
(107,218)(108,217)(109,216)(110,215);;
s4 := (219,220);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(220)!(1,2);
s1 := Sym(220)!(  4,  5)(  7, 11)(  8, 13)(  9, 12)( 10, 14)( 15, 31)( 16, 33)
( 17, 32)( 18, 34)( 19, 27)( 20, 29)( 21, 28)( 22, 30)( 23, 35)( 24, 37)
( 25, 36)( 26, 38)( 39, 87)( 40, 89)( 41, 88)( 42, 90)( 43, 95)( 44, 97)
( 45, 96)( 46, 98)( 47, 91)( 48, 93)( 49, 92)( 50, 94)( 51, 75)( 52, 77)
( 53, 76)( 54, 78)( 55, 83)( 56, 85)( 57, 84)( 58, 86)( 59, 79)( 60, 81)
( 61, 80)( 62, 82)( 63,103)( 64,105)( 65,104)( 66,106)( 67, 99)( 68,101)
( 69,100)( 70,102)( 71,107)( 72,109)( 73,108)( 74,110)(112,113)(115,119)
(116,121)(117,120)(118,122)(123,139)(124,141)(125,140)(126,142)(127,135)
(128,137)(129,136)(130,138)(131,143)(132,145)(133,144)(134,146)(147,195)
(148,197)(149,196)(150,198)(151,203)(152,205)(153,204)(154,206)(155,199)
(156,201)(157,200)(158,202)(159,183)(160,185)(161,184)(162,186)(163,191)
(164,193)(165,192)(166,194)(167,187)(168,189)(169,188)(170,190)(171,211)
(172,213)(173,212)(174,214)(175,207)(176,209)(177,208)(178,210)(179,215)
(180,217)(181,216)(182,218);
s2 := Sym(220)!(  3, 39)(  4, 40)(  5, 42)(  6, 41)(  7, 47)(  8, 48)(  9, 50)
( 10, 49)( 11, 43)( 12, 44)( 13, 46)( 14, 45)( 15, 67)( 16, 68)( 17, 70)
( 18, 69)( 19, 63)( 20, 64)( 21, 66)( 22, 65)( 23, 71)( 24, 72)( 25, 74)
( 26, 73)( 27, 55)( 28, 56)( 29, 58)( 30, 57)( 31, 51)( 32, 52)( 33, 54)
( 34, 53)( 35, 59)( 36, 60)( 37, 62)( 38, 61)( 75, 87)( 76, 88)( 77, 90)
( 78, 89)( 79, 95)( 80, 96)( 81, 98)( 82, 97)( 83, 91)( 84, 92)( 85, 94)
( 86, 93)( 99,103)(100,104)(101,106)(102,105)(109,110)(111,147)(112,148)
(113,150)(114,149)(115,155)(116,156)(117,158)(118,157)(119,151)(120,152)
(121,154)(122,153)(123,175)(124,176)(125,178)(126,177)(127,171)(128,172)
(129,174)(130,173)(131,179)(132,180)(133,182)(134,181)(135,163)(136,164)
(137,166)(138,165)(139,159)(140,160)(141,162)(142,161)(143,167)(144,168)
(145,170)(146,169)(183,195)(184,196)(185,198)(186,197)(187,203)(188,204)
(189,206)(190,205)(191,199)(192,200)(193,202)(194,201)(207,211)(208,212)
(209,214)(210,213)(217,218);
s3 := Sym(220)!(  3,114)(  4,113)(  5,112)(  6,111)(  7,118)(  8,117)(  9,116)
( 10,115)( 11,122)( 12,121)( 13,120)( 14,119)( 15,126)( 16,125)( 17,124)
( 18,123)( 19,130)( 20,129)( 21,128)( 22,127)( 23,134)( 24,133)( 25,132)
( 26,131)( 27,138)( 28,137)( 29,136)( 30,135)( 31,142)( 32,141)( 33,140)
( 34,139)( 35,146)( 36,145)( 37,144)( 38,143)( 39,150)( 40,149)( 41,148)
( 42,147)( 43,154)( 44,153)( 45,152)( 46,151)( 47,158)( 48,157)( 49,156)
( 50,155)( 51,162)( 52,161)( 53,160)( 54,159)( 55,166)( 56,165)( 57,164)
( 58,163)( 59,170)( 60,169)( 61,168)( 62,167)( 63,174)( 64,173)( 65,172)
( 66,171)( 67,178)( 68,177)( 69,176)( 70,175)( 71,182)( 72,181)( 73,180)
( 74,179)( 75,186)( 76,185)( 77,184)( 78,183)( 79,190)( 80,189)( 81,188)
( 82,187)( 83,194)( 84,193)( 85,192)( 86,191)( 87,198)( 88,197)( 89,196)
( 90,195)( 91,202)( 92,201)( 93,200)( 94,199)( 95,206)( 96,205)( 97,204)
( 98,203)( 99,210)(100,209)(101,208)(102,207)(103,214)(104,213)(105,212)
(106,211)(107,218)(108,217)(109,216)(110,215);
s4 := Sym(220)!(219,220);
poly := sub<Sym(220)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s2*s3*s2*s3*s2*s3*s2*s3, s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope