Polytope of Type {2,54,4,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,54,4,2}*1728c
if this polytope has a name.
Group : SmallGroup(1728,20782)
Rank : 5
Schlafli Type : {2,54,4,2}
Number of vertices, edges, etc : 2, 54, 108, 4, 2
Order of s0s1s2s3s4 : 54
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,27,4,2}*864
   3-fold quotients : {2,18,4,2}*576c
   6-fold quotients : {2,9,4,2}*288
   9-fold quotients : {2,6,4,2}*192b
   18-fold quotients : {2,3,4,2}*96
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4,  5)(  7, 11)(  8, 13)(  9, 12)( 10, 14)( 15, 31)( 16, 33)( 17, 32)
( 18, 34)( 19, 27)( 20, 29)( 21, 28)( 22, 30)( 23, 35)( 24, 37)( 25, 36)
( 26, 38)( 39, 87)( 40, 89)( 41, 88)( 42, 90)( 43, 95)( 44, 97)( 45, 96)
( 46, 98)( 47, 91)( 48, 93)( 49, 92)( 50, 94)( 51, 75)( 52, 77)( 53, 76)
( 54, 78)( 55, 83)( 56, 85)( 57, 84)( 58, 86)( 59, 79)( 60, 81)( 61, 80)
( 62, 82)( 63,103)( 64,105)( 65,104)( 66,106)( 67, 99)( 68,101)( 69,100)
( 70,102)( 71,107)( 72,109)( 73,108)( 74,110)(112,113)(115,119)(116,121)
(117,120)(118,122)(123,139)(124,141)(125,140)(126,142)(127,135)(128,137)
(129,136)(130,138)(131,143)(132,145)(133,144)(134,146)(147,195)(148,197)
(149,196)(150,198)(151,203)(152,205)(153,204)(154,206)(155,199)(156,201)
(157,200)(158,202)(159,183)(160,185)(161,184)(162,186)(163,191)(164,193)
(165,192)(166,194)(167,187)(168,189)(169,188)(170,190)(171,211)(172,213)
(173,212)(174,214)(175,207)(176,209)(177,208)(178,210)(179,215)(180,217)
(181,216)(182,218);;
s2 := (  3,147)(  4,148)(  5,150)(  6,149)(  7,155)(  8,156)(  9,158)( 10,157)
( 11,151)( 12,152)( 13,154)( 14,153)( 15,175)( 16,176)( 17,178)( 18,177)
( 19,171)( 20,172)( 21,174)( 22,173)( 23,179)( 24,180)( 25,182)( 26,181)
( 27,163)( 28,164)( 29,166)( 30,165)( 31,159)( 32,160)( 33,162)( 34,161)
( 35,167)( 36,168)( 37,170)( 38,169)( 39,111)( 40,112)( 41,114)( 42,113)
( 43,119)( 44,120)( 45,122)( 46,121)( 47,115)( 48,116)( 49,118)( 50,117)
( 51,139)( 52,140)( 53,142)( 54,141)( 55,135)( 56,136)( 57,138)( 58,137)
( 59,143)( 60,144)( 61,146)( 62,145)( 63,127)( 64,128)( 65,130)( 66,129)
( 67,123)( 68,124)( 69,126)( 70,125)( 71,131)( 72,132)( 73,134)( 74,133)
( 75,195)( 76,196)( 77,198)( 78,197)( 79,203)( 80,204)( 81,206)( 82,205)
( 83,199)( 84,200)( 85,202)( 86,201)( 87,183)( 88,184)( 89,186)( 90,185)
( 91,191)( 92,192)( 93,194)( 94,193)( 95,187)( 96,188)( 97,190)( 98,189)
( 99,211)(100,212)(101,214)(102,213)(103,207)(104,208)(105,210)(106,209)
(107,215)(108,216)(109,218)(110,217);;
s3 := (  3,114)(  4,113)(  5,112)(  6,111)(  7,118)(  8,117)(  9,116)( 10,115)
( 11,122)( 12,121)( 13,120)( 14,119)( 15,126)( 16,125)( 17,124)( 18,123)
( 19,130)( 20,129)( 21,128)( 22,127)( 23,134)( 24,133)( 25,132)( 26,131)
( 27,138)( 28,137)( 29,136)( 30,135)( 31,142)( 32,141)( 33,140)( 34,139)
( 35,146)( 36,145)( 37,144)( 38,143)( 39,150)( 40,149)( 41,148)( 42,147)
( 43,154)( 44,153)( 45,152)( 46,151)( 47,158)( 48,157)( 49,156)( 50,155)
( 51,162)( 52,161)( 53,160)( 54,159)( 55,166)( 56,165)( 57,164)( 58,163)
( 59,170)( 60,169)( 61,168)( 62,167)( 63,174)( 64,173)( 65,172)( 66,171)
( 67,178)( 68,177)( 69,176)( 70,175)( 71,182)( 72,181)( 73,180)( 74,179)
( 75,186)( 76,185)( 77,184)( 78,183)( 79,190)( 80,189)( 81,188)( 82,187)
( 83,194)( 84,193)( 85,192)( 86,191)( 87,198)( 88,197)( 89,196)( 90,195)
( 91,202)( 92,201)( 93,200)( 94,199)( 95,206)( 96,205)( 97,204)( 98,203)
( 99,210)(100,209)(101,208)(102,207)(103,214)(104,213)(105,212)(106,211)
(107,218)(108,217)(109,216)(110,215);;
s4 := (219,220);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s2*s1*s3*s2*s1*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(220)!(1,2);
s1 := Sym(220)!(  4,  5)(  7, 11)(  8, 13)(  9, 12)( 10, 14)( 15, 31)( 16, 33)
( 17, 32)( 18, 34)( 19, 27)( 20, 29)( 21, 28)( 22, 30)( 23, 35)( 24, 37)
( 25, 36)( 26, 38)( 39, 87)( 40, 89)( 41, 88)( 42, 90)( 43, 95)( 44, 97)
( 45, 96)( 46, 98)( 47, 91)( 48, 93)( 49, 92)( 50, 94)( 51, 75)( 52, 77)
( 53, 76)( 54, 78)( 55, 83)( 56, 85)( 57, 84)( 58, 86)( 59, 79)( 60, 81)
( 61, 80)( 62, 82)( 63,103)( 64,105)( 65,104)( 66,106)( 67, 99)( 68,101)
( 69,100)( 70,102)( 71,107)( 72,109)( 73,108)( 74,110)(112,113)(115,119)
(116,121)(117,120)(118,122)(123,139)(124,141)(125,140)(126,142)(127,135)
(128,137)(129,136)(130,138)(131,143)(132,145)(133,144)(134,146)(147,195)
(148,197)(149,196)(150,198)(151,203)(152,205)(153,204)(154,206)(155,199)
(156,201)(157,200)(158,202)(159,183)(160,185)(161,184)(162,186)(163,191)
(164,193)(165,192)(166,194)(167,187)(168,189)(169,188)(170,190)(171,211)
(172,213)(173,212)(174,214)(175,207)(176,209)(177,208)(178,210)(179,215)
(180,217)(181,216)(182,218);
s2 := Sym(220)!(  3,147)(  4,148)(  5,150)(  6,149)(  7,155)(  8,156)(  9,158)
( 10,157)( 11,151)( 12,152)( 13,154)( 14,153)( 15,175)( 16,176)( 17,178)
( 18,177)( 19,171)( 20,172)( 21,174)( 22,173)( 23,179)( 24,180)( 25,182)
( 26,181)( 27,163)( 28,164)( 29,166)( 30,165)( 31,159)( 32,160)( 33,162)
( 34,161)( 35,167)( 36,168)( 37,170)( 38,169)( 39,111)( 40,112)( 41,114)
( 42,113)( 43,119)( 44,120)( 45,122)( 46,121)( 47,115)( 48,116)( 49,118)
( 50,117)( 51,139)( 52,140)( 53,142)( 54,141)( 55,135)( 56,136)( 57,138)
( 58,137)( 59,143)( 60,144)( 61,146)( 62,145)( 63,127)( 64,128)( 65,130)
( 66,129)( 67,123)( 68,124)( 69,126)( 70,125)( 71,131)( 72,132)( 73,134)
( 74,133)( 75,195)( 76,196)( 77,198)( 78,197)( 79,203)( 80,204)( 81,206)
( 82,205)( 83,199)( 84,200)( 85,202)( 86,201)( 87,183)( 88,184)( 89,186)
( 90,185)( 91,191)( 92,192)( 93,194)( 94,193)( 95,187)( 96,188)( 97,190)
( 98,189)( 99,211)(100,212)(101,214)(102,213)(103,207)(104,208)(105,210)
(106,209)(107,215)(108,216)(109,218)(110,217);
s3 := Sym(220)!(  3,114)(  4,113)(  5,112)(  6,111)(  7,118)(  8,117)(  9,116)
( 10,115)( 11,122)( 12,121)( 13,120)( 14,119)( 15,126)( 16,125)( 17,124)
( 18,123)( 19,130)( 20,129)( 21,128)( 22,127)( 23,134)( 24,133)( 25,132)
( 26,131)( 27,138)( 28,137)( 29,136)( 30,135)( 31,142)( 32,141)( 33,140)
( 34,139)( 35,146)( 36,145)( 37,144)( 38,143)( 39,150)( 40,149)( 41,148)
( 42,147)( 43,154)( 44,153)( 45,152)( 46,151)( 47,158)( 48,157)( 49,156)
( 50,155)( 51,162)( 52,161)( 53,160)( 54,159)( 55,166)( 56,165)( 57,164)
( 58,163)( 59,170)( 60,169)( 61,168)( 62,167)( 63,174)( 64,173)( 65,172)
( 66,171)( 67,178)( 68,177)( 69,176)( 70,175)( 71,182)( 72,181)( 73,180)
( 74,179)( 75,186)( 76,185)( 77,184)( 78,183)( 79,190)( 80,189)( 81,188)
( 82,187)( 83,194)( 84,193)( 85,192)( 86,191)( 87,198)( 88,197)( 89,196)
( 90,195)( 91,202)( 92,201)( 93,200)( 94,199)( 95,206)( 96,205)( 97,204)
( 98,203)( 99,210)(100,209)(101,208)(102,207)(103,214)(104,213)(105,212)
(106,211)(107,218)(108,217)(109,216)(110,215);
s4 := Sym(220)!(219,220);
poly := sub<Sym(220)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s2*s3*s2*s3*s2*s3*s2*s3, s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s2*s1*s3*s2*s1*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s3 >; 
 

to this polytope