Polytope of Type {27,4,2,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {27,4,2,2}*1728
if this polytope has a name.
Group : SmallGroup(1728,20782)
Rank : 5
Schlafli Type : {27,4,2,2}
Number of vertices, edges, etc : 54, 108, 8, 2, 2
Order of s0s1s2s3s4 : 54
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {27,4,2,2}*864
   3-fold quotients : {9,4,2,2}*576
   4-fold quotients : {27,2,2,2}*432
   6-fold quotients : {9,4,2,2}*288
   9-fold quotients : {3,4,2,2}*192
   12-fold quotients : {9,2,2,2}*144
   18-fold quotients : {3,4,2,2}*96
   36-fold quotients : {3,2,2,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  3)(  5,  9)(  6, 11)(  7, 10)(  8, 12)( 13, 29)( 14, 31)( 15, 30)
( 16, 32)( 17, 25)( 18, 27)( 19, 26)( 20, 28)( 21, 33)( 22, 35)( 23, 34)
( 24, 36)( 37, 85)( 38, 87)( 39, 86)( 40, 88)( 41, 93)( 42, 95)( 43, 94)
( 44, 96)( 45, 89)( 46, 91)( 47, 90)( 48, 92)( 49, 73)( 50, 75)( 51, 74)
( 52, 76)( 53, 81)( 54, 83)( 55, 82)( 56, 84)( 57, 77)( 58, 79)( 59, 78)
( 60, 80)( 61,101)( 62,103)( 63,102)( 64,104)( 65, 97)( 66, 99)( 67, 98)
( 68,100)( 69,105)( 70,107)( 71,106)( 72,108)(110,111)(113,117)(114,119)
(115,118)(116,120)(121,137)(122,139)(123,138)(124,140)(125,133)(126,135)
(127,134)(128,136)(129,141)(130,143)(131,142)(132,144)(145,193)(146,195)
(147,194)(148,196)(149,201)(150,203)(151,202)(152,204)(153,197)(154,199)
(155,198)(156,200)(157,181)(158,183)(159,182)(160,184)(161,189)(162,191)
(163,190)(164,192)(165,185)(166,187)(167,186)(168,188)(169,209)(170,211)
(171,210)(172,212)(173,205)(174,207)(175,206)(176,208)(177,213)(178,215)
(179,214)(180,216);;
s1 := (  1, 37)(  2, 38)(  3, 40)(  4, 39)(  5, 45)(  6, 46)(  7, 48)(  8, 47)
(  9, 41)( 10, 42)( 11, 44)( 12, 43)( 13, 65)( 14, 66)( 15, 68)( 16, 67)
( 17, 61)( 18, 62)( 19, 64)( 20, 63)( 21, 69)( 22, 70)( 23, 72)( 24, 71)
( 25, 53)( 26, 54)( 27, 56)( 28, 55)( 29, 49)( 30, 50)( 31, 52)( 32, 51)
( 33, 57)( 34, 58)( 35, 60)( 36, 59)( 73, 85)( 74, 86)( 75, 88)( 76, 87)
( 77, 93)( 78, 94)( 79, 96)( 80, 95)( 81, 89)( 82, 90)( 83, 92)( 84, 91)
( 97,101)( 98,102)( 99,104)(100,103)(107,108)(109,145)(110,146)(111,148)
(112,147)(113,153)(114,154)(115,156)(116,155)(117,149)(118,150)(119,152)
(120,151)(121,173)(122,174)(123,176)(124,175)(125,169)(126,170)(127,172)
(128,171)(129,177)(130,178)(131,180)(132,179)(133,161)(134,162)(135,164)
(136,163)(137,157)(138,158)(139,160)(140,159)(141,165)(142,166)(143,168)
(144,167)(181,193)(182,194)(183,196)(184,195)(185,201)(186,202)(187,204)
(188,203)(189,197)(190,198)(191,200)(192,199)(205,209)(206,210)(207,212)
(208,211)(215,216);;
s2 := (  1,112)(  2,111)(  3,110)(  4,109)(  5,116)(  6,115)(  7,114)(  8,113)
(  9,120)( 10,119)( 11,118)( 12,117)( 13,124)( 14,123)( 15,122)( 16,121)
( 17,128)( 18,127)( 19,126)( 20,125)( 21,132)( 22,131)( 23,130)( 24,129)
( 25,136)( 26,135)( 27,134)( 28,133)( 29,140)( 30,139)( 31,138)( 32,137)
( 33,144)( 34,143)( 35,142)( 36,141)( 37,148)( 38,147)( 39,146)( 40,145)
( 41,152)( 42,151)( 43,150)( 44,149)( 45,156)( 46,155)( 47,154)( 48,153)
( 49,160)( 50,159)( 51,158)( 52,157)( 53,164)( 54,163)( 55,162)( 56,161)
( 57,168)( 58,167)( 59,166)( 60,165)( 61,172)( 62,171)( 63,170)( 64,169)
( 65,176)( 66,175)( 67,174)( 68,173)( 69,180)( 70,179)( 71,178)( 72,177)
( 73,184)( 74,183)( 75,182)( 76,181)( 77,188)( 78,187)( 79,186)( 80,185)
( 81,192)( 82,191)( 83,190)( 84,189)( 85,196)( 86,195)( 87,194)( 88,193)
( 89,200)( 90,199)( 91,198)( 92,197)( 93,204)( 94,203)( 95,202)( 96,201)
( 97,208)( 98,207)( 99,206)(100,205)(101,212)(102,211)(103,210)(104,209)
(105,216)(106,215)(107,214)(108,213);;
s3 := (217,218);;
s4 := (219,220);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(220)!(  2,  3)(  5,  9)(  6, 11)(  7, 10)(  8, 12)( 13, 29)( 14, 31)
( 15, 30)( 16, 32)( 17, 25)( 18, 27)( 19, 26)( 20, 28)( 21, 33)( 22, 35)
( 23, 34)( 24, 36)( 37, 85)( 38, 87)( 39, 86)( 40, 88)( 41, 93)( 42, 95)
( 43, 94)( 44, 96)( 45, 89)( 46, 91)( 47, 90)( 48, 92)( 49, 73)( 50, 75)
( 51, 74)( 52, 76)( 53, 81)( 54, 83)( 55, 82)( 56, 84)( 57, 77)( 58, 79)
( 59, 78)( 60, 80)( 61,101)( 62,103)( 63,102)( 64,104)( 65, 97)( 66, 99)
( 67, 98)( 68,100)( 69,105)( 70,107)( 71,106)( 72,108)(110,111)(113,117)
(114,119)(115,118)(116,120)(121,137)(122,139)(123,138)(124,140)(125,133)
(126,135)(127,134)(128,136)(129,141)(130,143)(131,142)(132,144)(145,193)
(146,195)(147,194)(148,196)(149,201)(150,203)(151,202)(152,204)(153,197)
(154,199)(155,198)(156,200)(157,181)(158,183)(159,182)(160,184)(161,189)
(162,191)(163,190)(164,192)(165,185)(166,187)(167,186)(168,188)(169,209)
(170,211)(171,210)(172,212)(173,205)(174,207)(175,206)(176,208)(177,213)
(178,215)(179,214)(180,216);
s1 := Sym(220)!(  1, 37)(  2, 38)(  3, 40)(  4, 39)(  5, 45)(  6, 46)(  7, 48)
(  8, 47)(  9, 41)( 10, 42)( 11, 44)( 12, 43)( 13, 65)( 14, 66)( 15, 68)
( 16, 67)( 17, 61)( 18, 62)( 19, 64)( 20, 63)( 21, 69)( 22, 70)( 23, 72)
( 24, 71)( 25, 53)( 26, 54)( 27, 56)( 28, 55)( 29, 49)( 30, 50)( 31, 52)
( 32, 51)( 33, 57)( 34, 58)( 35, 60)( 36, 59)( 73, 85)( 74, 86)( 75, 88)
( 76, 87)( 77, 93)( 78, 94)( 79, 96)( 80, 95)( 81, 89)( 82, 90)( 83, 92)
( 84, 91)( 97,101)( 98,102)( 99,104)(100,103)(107,108)(109,145)(110,146)
(111,148)(112,147)(113,153)(114,154)(115,156)(116,155)(117,149)(118,150)
(119,152)(120,151)(121,173)(122,174)(123,176)(124,175)(125,169)(126,170)
(127,172)(128,171)(129,177)(130,178)(131,180)(132,179)(133,161)(134,162)
(135,164)(136,163)(137,157)(138,158)(139,160)(140,159)(141,165)(142,166)
(143,168)(144,167)(181,193)(182,194)(183,196)(184,195)(185,201)(186,202)
(187,204)(188,203)(189,197)(190,198)(191,200)(192,199)(205,209)(206,210)
(207,212)(208,211)(215,216);
s2 := Sym(220)!(  1,112)(  2,111)(  3,110)(  4,109)(  5,116)(  6,115)(  7,114)
(  8,113)(  9,120)( 10,119)( 11,118)( 12,117)( 13,124)( 14,123)( 15,122)
( 16,121)( 17,128)( 18,127)( 19,126)( 20,125)( 21,132)( 22,131)( 23,130)
( 24,129)( 25,136)( 26,135)( 27,134)( 28,133)( 29,140)( 30,139)( 31,138)
( 32,137)( 33,144)( 34,143)( 35,142)( 36,141)( 37,148)( 38,147)( 39,146)
( 40,145)( 41,152)( 42,151)( 43,150)( 44,149)( 45,156)( 46,155)( 47,154)
( 48,153)( 49,160)( 50,159)( 51,158)( 52,157)( 53,164)( 54,163)( 55,162)
( 56,161)( 57,168)( 58,167)( 59,166)( 60,165)( 61,172)( 62,171)( 63,170)
( 64,169)( 65,176)( 66,175)( 67,174)( 68,173)( 69,180)( 70,179)( 71,178)
( 72,177)( 73,184)( 74,183)( 75,182)( 76,181)( 77,188)( 78,187)( 79,186)
( 80,185)( 81,192)( 82,191)( 83,190)( 84,189)( 85,196)( 86,195)( 87,194)
( 88,193)( 89,200)( 90,199)( 91,198)( 92,197)( 93,204)( 94,203)( 95,202)
( 96,201)( 97,208)( 98,207)( 99,206)(100,205)(101,212)(102,211)(103,210)
(104,209)(105,216)(106,215)(107,214)(108,213);
s3 := Sym(220)!(217,218);
s4 := Sym(220)!(219,220);
poly := sub<Sym(220)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope