Polytope of Type {2,2,54,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,54,4}*1728b
if this polytope has a name.
Group : SmallGroup(1728,20782)
Rank : 5
Schlafli Type : {2,2,54,4}
Number of vertices, edges, etc : 2, 2, 54, 108, 4
Order of s0s1s2s3s4 : 54
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,27,4}*864
   3-fold quotients : {2,2,18,4}*576b
   6-fold quotients : {2,2,9,4}*288
   9-fold quotients : {2,2,6,4}*192c
   18-fold quotients : {2,2,3,4}*96
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (  6,  7)(  9, 13)( 10, 15)( 11, 14)( 12, 16)( 17, 33)( 18, 35)( 19, 34)
( 20, 36)( 21, 29)( 22, 31)( 23, 30)( 24, 32)( 25, 37)( 26, 39)( 27, 38)
( 28, 40)( 41, 89)( 42, 91)( 43, 90)( 44, 92)( 45, 97)( 46, 99)( 47, 98)
( 48,100)( 49, 93)( 50, 95)( 51, 94)( 52, 96)( 53, 77)( 54, 79)( 55, 78)
( 56, 80)( 57, 85)( 58, 87)( 59, 86)( 60, 88)( 61, 81)( 62, 83)( 63, 82)
( 64, 84)( 65,105)( 66,107)( 67,106)( 68,108)( 69,101)( 70,103)( 71,102)
( 72,104)( 73,109)( 74,111)( 75,110)( 76,112)(114,115)(117,121)(118,123)
(119,122)(120,124)(125,141)(126,143)(127,142)(128,144)(129,137)(130,139)
(131,138)(132,140)(133,145)(134,147)(135,146)(136,148)(149,197)(150,199)
(151,198)(152,200)(153,205)(154,207)(155,206)(156,208)(157,201)(158,203)
(159,202)(160,204)(161,185)(162,187)(163,186)(164,188)(165,193)(166,195)
(167,194)(168,196)(169,189)(170,191)(171,190)(172,192)(173,213)(174,215)
(175,214)(176,216)(177,209)(178,211)(179,210)(180,212)(181,217)(182,219)
(183,218)(184,220);;
s3 := (  5,149)(  6,150)(  7,152)(  8,151)(  9,157)( 10,158)( 11,160)( 12,159)
( 13,153)( 14,154)( 15,156)( 16,155)( 17,177)( 18,178)( 19,180)( 20,179)
( 21,173)( 22,174)( 23,176)( 24,175)( 25,181)( 26,182)( 27,184)( 28,183)
( 29,165)( 30,166)( 31,168)( 32,167)( 33,161)( 34,162)( 35,164)( 36,163)
( 37,169)( 38,170)( 39,172)( 40,171)( 41,113)( 42,114)( 43,116)( 44,115)
( 45,121)( 46,122)( 47,124)( 48,123)( 49,117)( 50,118)( 51,120)( 52,119)
( 53,141)( 54,142)( 55,144)( 56,143)( 57,137)( 58,138)( 59,140)( 60,139)
( 61,145)( 62,146)( 63,148)( 64,147)( 65,129)( 66,130)( 67,132)( 68,131)
( 69,125)( 70,126)( 71,128)( 72,127)( 73,133)( 74,134)( 75,136)( 76,135)
( 77,197)( 78,198)( 79,200)( 80,199)( 81,205)( 82,206)( 83,208)( 84,207)
( 85,201)( 86,202)( 87,204)( 88,203)( 89,185)( 90,186)( 91,188)( 92,187)
( 93,193)( 94,194)( 95,196)( 96,195)( 97,189)( 98,190)( 99,192)(100,191)
(101,213)(102,214)(103,216)(104,215)(105,209)(106,210)(107,212)(108,211)
(109,217)(110,218)(111,220)(112,219);;
s4 := (  5,  8)(  6,  7)(  9, 12)( 10, 11)( 13, 16)( 14, 15)( 17, 20)( 18, 19)
( 21, 24)( 22, 23)( 25, 28)( 26, 27)( 29, 32)( 30, 31)( 33, 36)( 34, 35)
( 37, 40)( 38, 39)( 41, 44)( 42, 43)( 45, 48)( 46, 47)( 49, 52)( 50, 51)
( 53, 56)( 54, 55)( 57, 60)( 58, 59)( 61, 64)( 62, 63)( 65, 68)( 66, 67)
( 69, 72)( 70, 71)( 73, 76)( 74, 75)( 77, 80)( 78, 79)( 81, 84)( 82, 83)
( 85, 88)( 86, 87)( 89, 92)( 90, 91)( 93, 96)( 94, 95)( 97,100)( 98, 99)
(101,104)(102,103)(105,108)(106,107)(109,112)(110,111)(113,116)(114,115)
(117,120)(118,119)(121,124)(122,123)(125,128)(126,127)(129,132)(130,131)
(133,136)(134,135)(137,140)(138,139)(141,144)(142,143)(145,148)(146,147)
(149,152)(150,151)(153,156)(154,155)(157,160)(158,159)(161,164)(162,163)
(165,168)(166,167)(169,172)(170,171)(173,176)(174,175)(177,180)(178,179)
(181,184)(182,183)(185,188)(186,187)(189,192)(190,191)(193,196)(194,195)
(197,200)(198,199)(201,204)(202,203)(205,208)(206,207)(209,212)(210,211)
(213,216)(214,215)(217,220)(218,219);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4*s3*s4*s3*s4, 
s4*s3*s2*s4*s3*s4*s3*s2*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(220)!(1,2);
s1 := Sym(220)!(3,4);
s2 := Sym(220)!(  6,  7)(  9, 13)( 10, 15)( 11, 14)( 12, 16)( 17, 33)( 18, 35)
( 19, 34)( 20, 36)( 21, 29)( 22, 31)( 23, 30)( 24, 32)( 25, 37)( 26, 39)
( 27, 38)( 28, 40)( 41, 89)( 42, 91)( 43, 90)( 44, 92)( 45, 97)( 46, 99)
( 47, 98)( 48,100)( 49, 93)( 50, 95)( 51, 94)( 52, 96)( 53, 77)( 54, 79)
( 55, 78)( 56, 80)( 57, 85)( 58, 87)( 59, 86)( 60, 88)( 61, 81)( 62, 83)
( 63, 82)( 64, 84)( 65,105)( 66,107)( 67,106)( 68,108)( 69,101)( 70,103)
( 71,102)( 72,104)( 73,109)( 74,111)( 75,110)( 76,112)(114,115)(117,121)
(118,123)(119,122)(120,124)(125,141)(126,143)(127,142)(128,144)(129,137)
(130,139)(131,138)(132,140)(133,145)(134,147)(135,146)(136,148)(149,197)
(150,199)(151,198)(152,200)(153,205)(154,207)(155,206)(156,208)(157,201)
(158,203)(159,202)(160,204)(161,185)(162,187)(163,186)(164,188)(165,193)
(166,195)(167,194)(168,196)(169,189)(170,191)(171,190)(172,192)(173,213)
(174,215)(175,214)(176,216)(177,209)(178,211)(179,210)(180,212)(181,217)
(182,219)(183,218)(184,220);
s3 := Sym(220)!(  5,149)(  6,150)(  7,152)(  8,151)(  9,157)( 10,158)( 11,160)
( 12,159)( 13,153)( 14,154)( 15,156)( 16,155)( 17,177)( 18,178)( 19,180)
( 20,179)( 21,173)( 22,174)( 23,176)( 24,175)( 25,181)( 26,182)( 27,184)
( 28,183)( 29,165)( 30,166)( 31,168)( 32,167)( 33,161)( 34,162)( 35,164)
( 36,163)( 37,169)( 38,170)( 39,172)( 40,171)( 41,113)( 42,114)( 43,116)
( 44,115)( 45,121)( 46,122)( 47,124)( 48,123)( 49,117)( 50,118)( 51,120)
( 52,119)( 53,141)( 54,142)( 55,144)( 56,143)( 57,137)( 58,138)( 59,140)
( 60,139)( 61,145)( 62,146)( 63,148)( 64,147)( 65,129)( 66,130)( 67,132)
( 68,131)( 69,125)( 70,126)( 71,128)( 72,127)( 73,133)( 74,134)( 75,136)
( 76,135)( 77,197)( 78,198)( 79,200)( 80,199)( 81,205)( 82,206)( 83,208)
( 84,207)( 85,201)( 86,202)( 87,204)( 88,203)( 89,185)( 90,186)( 91,188)
( 92,187)( 93,193)( 94,194)( 95,196)( 96,195)( 97,189)( 98,190)( 99,192)
(100,191)(101,213)(102,214)(103,216)(104,215)(105,209)(106,210)(107,212)
(108,211)(109,217)(110,218)(111,220)(112,219);
s4 := Sym(220)!(  5,  8)(  6,  7)(  9, 12)( 10, 11)( 13, 16)( 14, 15)( 17, 20)
( 18, 19)( 21, 24)( 22, 23)( 25, 28)( 26, 27)( 29, 32)( 30, 31)( 33, 36)
( 34, 35)( 37, 40)( 38, 39)( 41, 44)( 42, 43)( 45, 48)( 46, 47)( 49, 52)
( 50, 51)( 53, 56)( 54, 55)( 57, 60)( 58, 59)( 61, 64)( 62, 63)( 65, 68)
( 66, 67)( 69, 72)( 70, 71)( 73, 76)( 74, 75)( 77, 80)( 78, 79)( 81, 84)
( 82, 83)( 85, 88)( 86, 87)( 89, 92)( 90, 91)( 93, 96)( 94, 95)( 97,100)
( 98, 99)(101,104)(102,103)(105,108)(106,107)(109,112)(110,111)(113,116)
(114,115)(117,120)(118,119)(121,124)(122,123)(125,128)(126,127)(129,132)
(130,131)(133,136)(134,135)(137,140)(138,139)(141,144)(142,143)(145,148)
(146,147)(149,152)(150,151)(153,156)(154,155)(157,160)(158,159)(161,164)
(162,163)(165,168)(166,167)(169,172)(170,171)(173,176)(174,175)(177,180)
(178,179)(181,184)(182,183)(185,188)(186,187)(189,192)(190,191)(193,196)
(194,195)(197,200)(198,199)(201,204)(202,203)(205,208)(206,207)(209,212)
(210,211)(213,216)(214,215)(217,220)(218,219);
poly := sub<Sym(220)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4*s3*s4*s3*s4, s4*s3*s2*s4*s3*s4*s3*s2*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope