Polytope of Type {27,4,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {27,4,4}*1728a
if this polytope has a name.
Group : SmallGroup(1728,2197)
Rank : 4
Schlafli Type : {27,4,4}
Number of vertices, edges, etc : 27, 108, 16, 8
Order of s0s1s2s3 : 54
Order of s0s1s2s3s2s1 : 4
Special Properties :
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {9,4,4}*576a
   4-fold quotients : {27,4,2}*432
   9-fold quotients : {3,4,4}*192a
   12-fold quotients : {9,4,2}*144
   36-fold quotients : {3,4,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  3,  4)(  7,  8)(  9, 13)( 10, 14)( 11, 16)( 12, 15)( 17, 33)( 18, 34)
( 19, 36)( 20, 35)( 21, 37)( 22, 38)( 23, 40)( 24, 39)( 25, 45)( 26, 46)
( 27, 48)( 28, 47)( 29, 41)( 30, 42)( 31, 44)( 32, 43)( 49,129)( 50,130)
( 51,132)( 52,131)( 53,133)( 54,134)( 55,136)( 56,135)( 57,141)( 58,142)
( 59,144)( 60,143)( 61,137)( 62,138)( 63,140)( 64,139)( 65,113)( 66,114)
( 67,116)( 68,115)( 69,117)( 70,118)( 71,120)( 72,119)( 73,125)( 74,126)
( 75,128)( 76,127)( 77,121)( 78,122)( 79,124)( 80,123)( 81, 97)( 82, 98)
( 83,100)( 84, 99)( 85,101)( 86,102)( 87,104)( 88,103)( 89,109)( 90,110)
( 91,112)( 92,111)( 93,105)( 94,106)( 95,108)( 96,107)(145,417)(146,418)
(147,420)(148,419)(149,421)(150,422)(151,424)(152,423)(153,429)(154,430)
(155,432)(156,431)(157,425)(158,426)(159,428)(160,427)(161,401)(162,402)
(163,404)(164,403)(165,405)(166,406)(167,408)(168,407)(169,413)(170,414)
(171,416)(172,415)(173,409)(174,410)(175,412)(176,411)(177,385)(178,386)
(179,388)(180,387)(181,389)(182,390)(183,392)(184,391)(185,397)(186,398)
(187,400)(188,399)(189,393)(190,394)(191,396)(192,395)(193,369)(194,370)
(195,372)(196,371)(197,373)(198,374)(199,376)(200,375)(201,381)(202,382)
(203,384)(204,383)(205,377)(206,378)(207,380)(208,379)(209,353)(210,354)
(211,356)(212,355)(213,357)(214,358)(215,360)(216,359)(217,365)(218,366)
(219,368)(220,367)(221,361)(222,362)(223,364)(224,363)(225,337)(226,338)
(227,340)(228,339)(229,341)(230,342)(231,344)(232,343)(233,349)(234,350)
(235,352)(236,351)(237,345)(238,346)(239,348)(240,347)(241,321)(242,322)
(243,324)(244,323)(245,325)(246,326)(247,328)(248,327)(249,333)(250,334)
(251,336)(252,335)(253,329)(254,330)(255,332)(256,331)(257,305)(258,306)
(259,308)(260,307)(261,309)(262,310)(263,312)(264,311)(265,317)(266,318)
(267,320)(268,319)(269,313)(270,314)(271,316)(272,315)(273,289)(274,290)
(275,292)(276,291)(277,293)(278,294)(279,296)(280,295)(281,301)(282,302)
(283,304)(284,303)(285,297)(286,298)(287,300)(288,299);;
s1 := (  1,145)(  2,148)(  3,147)(  4,146)(  5,157)(  6,160)(  7,159)(  8,158)
(  9,153)( 10,156)( 11,155)( 12,154)( 13,149)( 14,152)( 15,151)( 16,150)
( 17,177)( 18,180)( 19,179)( 20,178)( 21,189)( 22,192)( 23,191)( 24,190)
( 25,185)( 26,188)( 27,187)( 28,186)( 29,181)( 30,184)( 31,183)( 32,182)
( 33,161)( 34,164)( 35,163)( 36,162)( 37,173)( 38,176)( 39,175)( 40,174)
( 41,169)( 42,172)( 43,171)( 44,170)( 45,165)( 46,168)( 47,167)( 48,166)
( 49,273)( 50,276)( 51,275)( 52,274)( 53,285)( 54,288)( 55,287)( 56,286)
( 57,281)( 58,284)( 59,283)( 60,282)( 61,277)( 62,280)( 63,279)( 64,278)
( 65,257)( 66,260)( 67,259)( 68,258)( 69,269)( 70,272)( 71,271)( 72,270)
( 73,265)( 74,268)( 75,267)( 76,266)( 77,261)( 78,264)( 79,263)( 80,262)
( 81,241)( 82,244)( 83,243)( 84,242)( 85,253)( 86,256)( 87,255)( 88,254)
( 89,249)( 90,252)( 91,251)( 92,250)( 93,245)( 94,248)( 95,247)( 96,246)
( 97,225)( 98,228)( 99,227)(100,226)(101,237)(102,240)(103,239)(104,238)
(105,233)(106,236)(107,235)(108,234)(109,229)(110,232)(111,231)(112,230)
(113,209)(114,212)(115,211)(116,210)(117,221)(118,224)(119,223)(120,222)
(121,217)(122,220)(123,219)(124,218)(125,213)(126,216)(127,215)(128,214)
(129,193)(130,196)(131,195)(132,194)(133,205)(134,208)(135,207)(136,206)
(137,201)(138,204)(139,203)(140,202)(141,197)(142,200)(143,199)(144,198)
(289,417)(290,420)(291,419)(292,418)(293,429)(294,432)(295,431)(296,430)
(297,425)(298,428)(299,427)(300,426)(301,421)(302,424)(303,423)(304,422)
(305,401)(306,404)(307,403)(308,402)(309,413)(310,416)(311,415)(312,414)
(313,409)(314,412)(315,411)(316,410)(317,405)(318,408)(319,407)(320,406)
(321,385)(322,388)(323,387)(324,386)(325,397)(326,400)(327,399)(328,398)
(329,393)(330,396)(331,395)(332,394)(333,389)(334,392)(335,391)(336,390)
(337,369)(338,372)(339,371)(340,370)(341,381)(342,384)(343,383)(344,382)
(345,377)(346,380)(347,379)(348,378)(349,373)(350,376)(351,375)(352,374)
(354,356)(357,365)(358,368)(359,367)(360,366)(362,364);;
s2 := (  1,  5)(  2,  6)(  3,  7)(  4,  8)(  9, 13)( 10, 14)( 11, 15)( 12, 16)
( 17, 21)( 18, 22)( 19, 23)( 20, 24)( 25, 29)( 26, 30)( 27, 31)( 28, 32)
( 33, 37)( 34, 38)( 35, 39)( 36, 40)( 41, 45)( 42, 46)( 43, 47)( 44, 48)
( 49, 53)( 50, 54)( 51, 55)( 52, 56)( 57, 61)( 58, 62)( 59, 63)( 60, 64)
( 65, 69)( 66, 70)( 67, 71)( 68, 72)( 73, 77)( 74, 78)( 75, 79)( 76, 80)
( 81, 85)( 82, 86)( 83, 87)( 84, 88)( 89, 93)( 90, 94)( 91, 95)( 92, 96)
( 97,101)( 98,102)( 99,103)(100,104)(105,109)(106,110)(107,111)(108,112)
(113,117)(114,118)(115,119)(116,120)(121,125)(122,126)(123,127)(124,128)
(129,133)(130,134)(131,135)(132,136)(137,141)(138,142)(139,143)(140,144)
(145,149)(146,150)(147,151)(148,152)(153,157)(154,158)(155,159)(156,160)
(161,165)(162,166)(163,167)(164,168)(169,173)(170,174)(171,175)(172,176)
(177,181)(178,182)(179,183)(180,184)(185,189)(186,190)(187,191)(188,192)
(193,197)(194,198)(195,199)(196,200)(201,205)(202,206)(203,207)(204,208)
(209,213)(210,214)(211,215)(212,216)(217,221)(218,222)(219,223)(220,224)
(225,229)(226,230)(227,231)(228,232)(233,237)(234,238)(235,239)(236,240)
(241,245)(242,246)(243,247)(244,248)(249,253)(250,254)(251,255)(252,256)
(257,261)(258,262)(259,263)(260,264)(265,269)(266,270)(267,271)(268,272)
(273,277)(274,278)(275,279)(276,280)(281,285)(282,286)(283,287)(284,288)
(289,293)(290,294)(291,295)(292,296)(297,301)(298,302)(299,303)(300,304)
(305,309)(306,310)(307,311)(308,312)(313,317)(314,318)(315,319)(316,320)
(321,325)(322,326)(323,327)(324,328)(329,333)(330,334)(331,335)(332,336)
(337,341)(338,342)(339,343)(340,344)(345,349)(346,350)(347,351)(348,352)
(353,357)(354,358)(355,359)(356,360)(361,365)(362,366)(363,367)(364,368)
(369,373)(370,374)(371,375)(372,376)(377,381)(378,382)(379,383)(380,384)
(385,389)(386,390)(387,391)(388,392)(393,397)(394,398)(395,399)(396,400)
(401,405)(402,406)(403,407)(404,408)(409,413)(410,414)(411,415)(412,416)
(417,421)(418,422)(419,423)(420,424)(425,429)(426,430)(427,431)(428,432);;
s3 := (  5,  6)(  7,  8)(  9, 11)( 10, 12)( 13, 16)( 14, 15)( 21, 22)( 23, 24)
( 25, 27)( 26, 28)( 29, 32)( 30, 31)( 37, 38)( 39, 40)( 41, 43)( 42, 44)
( 45, 48)( 46, 47)( 53, 54)( 55, 56)( 57, 59)( 58, 60)( 61, 64)( 62, 63)
( 69, 70)( 71, 72)( 73, 75)( 74, 76)( 77, 80)( 78, 79)( 85, 86)( 87, 88)
( 89, 91)( 90, 92)( 93, 96)( 94, 95)(101,102)(103,104)(105,107)(106,108)
(109,112)(110,111)(117,118)(119,120)(121,123)(122,124)(125,128)(126,127)
(133,134)(135,136)(137,139)(138,140)(141,144)(142,143)(149,150)(151,152)
(153,155)(154,156)(157,160)(158,159)(165,166)(167,168)(169,171)(170,172)
(173,176)(174,175)(181,182)(183,184)(185,187)(186,188)(189,192)(190,191)
(197,198)(199,200)(201,203)(202,204)(205,208)(206,207)(213,214)(215,216)
(217,219)(218,220)(221,224)(222,223)(229,230)(231,232)(233,235)(234,236)
(237,240)(238,239)(245,246)(247,248)(249,251)(250,252)(253,256)(254,255)
(261,262)(263,264)(265,267)(266,268)(269,272)(270,271)(277,278)(279,280)
(281,283)(282,284)(285,288)(286,287)(293,294)(295,296)(297,299)(298,300)
(301,304)(302,303)(309,310)(311,312)(313,315)(314,316)(317,320)(318,319)
(325,326)(327,328)(329,331)(330,332)(333,336)(334,335)(341,342)(343,344)
(345,347)(346,348)(349,352)(350,351)(357,358)(359,360)(361,363)(362,364)
(365,368)(366,367)(373,374)(375,376)(377,379)(378,380)(381,384)(382,383)
(389,390)(391,392)(393,395)(394,396)(397,400)(398,399)(405,406)(407,408)
(409,411)(410,412)(413,416)(414,415)(421,422)(423,424)(425,427)(426,428)
(429,432)(430,431);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3, s2*s1*s0*s2*s1*s2*s1*s0*s1, 
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(432)!(  3,  4)(  7,  8)(  9, 13)( 10, 14)( 11, 16)( 12, 15)( 17, 33)
( 18, 34)( 19, 36)( 20, 35)( 21, 37)( 22, 38)( 23, 40)( 24, 39)( 25, 45)
( 26, 46)( 27, 48)( 28, 47)( 29, 41)( 30, 42)( 31, 44)( 32, 43)( 49,129)
( 50,130)( 51,132)( 52,131)( 53,133)( 54,134)( 55,136)( 56,135)( 57,141)
( 58,142)( 59,144)( 60,143)( 61,137)( 62,138)( 63,140)( 64,139)( 65,113)
( 66,114)( 67,116)( 68,115)( 69,117)( 70,118)( 71,120)( 72,119)( 73,125)
( 74,126)( 75,128)( 76,127)( 77,121)( 78,122)( 79,124)( 80,123)( 81, 97)
( 82, 98)( 83,100)( 84, 99)( 85,101)( 86,102)( 87,104)( 88,103)( 89,109)
( 90,110)( 91,112)( 92,111)( 93,105)( 94,106)( 95,108)( 96,107)(145,417)
(146,418)(147,420)(148,419)(149,421)(150,422)(151,424)(152,423)(153,429)
(154,430)(155,432)(156,431)(157,425)(158,426)(159,428)(160,427)(161,401)
(162,402)(163,404)(164,403)(165,405)(166,406)(167,408)(168,407)(169,413)
(170,414)(171,416)(172,415)(173,409)(174,410)(175,412)(176,411)(177,385)
(178,386)(179,388)(180,387)(181,389)(182,390)(183,392)(184,391)(185,397)
(186,398)(187,400)(188,399)(189,393)(190,394)(191,396)(192,395)(193,369)
(194,370)(195,372)(196,371)(197,373)(198,374)(199,376)(200,375)(201,381)
(202,382)(203,384)(204,383)(205,377)(206,378)(207,380)(208,379)(209,353)
(210,354)(211,356)(212,355)(213,357)(214,358)(215,360)(216,359)(217,365)
(218,366)(219,368)(220,367)(221,361)(222,362)(223,364)(224,363)(225,337)
(226,338)(227,340)(228,339)(229,341)(230,342)(231,344)(232,343)(233,349)
(234,350)(235,352)(236,351)(237,345)(238,346)(239,348)(240,347)(241,321)
(242,322)(243,324)(244,323)(245,325)(246,326)(247,328)(248,327)(249,333)
(250,334)(251,336)(252,335)(253,329)(254,330)(255,332)(256,331)(257,305)
(258,306)(259,308)(260,307)(261,309)(262,310)(263,312)(264,311)(265,317)
(266,318)(267,320)(268,319)(269,313)(270,314)(271,316)(272,315)(273,289)
(274,290)(275,292)(276,291)(277,293)(278,294)(279,296)(280,295)(281,301)
(282,302)(283,304)(284,303)(285,297)(286,298)(287,300)(288,299);
s1 := Sym(432)!(  1,145)(  2,148)(  3,147)(  4,146)(  5,157)(  6,160)(  7,159)
(  8,158)(  9,153)( 10,156)( 11,155)( 12,154)( 13,149)( 14,152)( 15,151)
( 16,150)( 17,177)( 18,180)( 19,179)( 20,178)( 21,189)( 22,192)( 23,191)
( 24,190)( 25,185)( 26,188)( 27,187)( 28,186)( 29,181)( 30,184)( 31,183)
( 32,182)( 33,161)( 34,164)( 35,163)( 36,162)( 37,173)( 38,176)( 39,175)
( 40,174)( 41,169)( 42,172)( 43,171)( 44,170)( 45,165)( 46,168)( 47,167)
( 48,166)( 49,273)( 50,276)( 51,275)( 52,274)( 53,285)( 54,288)( 55,287)
( 56,286)( 57,281)( 58,284)( 59,283)( 60,282)( 61,277)( 62,280)( 63,279)
( 64,278)( 65,257)( 66,260)( 67,259)( 68,258)( 69,269)( 70,272)( 71,271)
( 72,270)( 73,265)( 74,268)( 75,267)( 76,266)( 77,261)( 78,264)( 79,263)
( 80,262)( 81,241)( 82,244)( 83,243)( 84,242)( 85,253)( 86,256)( 87,255)
( 88,254)( 89,249)( 90,252)( 91,251)( 92,250)( 93,245)( 94,248)( 95,247)
( 96,246)( 97,225)( 98,228)( 99,227)(100,226)(101,237)(102,240)(103,239)
(104,238)(105,233)(106,236)(107,235)(108,234)(109,229)(110,232)(111,231)
(112,230)(113,209)(114,212)(115,211)(116,210)(117,221)(118,224)(119,223)
(120,222)(121,217)(122,220)(123,219)(124,218)(125,213)(126,216)(127,215)
(128,214)(129,193)(130,196)(131,195)(132,194)(133,205)(134,208)(135,207)
(136,206)(137,201)(138,204)(139,203)(140,202)(141,197)(142,200)(143,199)
(144,198)(289,417)(290,420)(291,419)(292,418)(293,429)(294,432)(295,431)
(296,430)(297,425)(298,428)(299,427)(300,426)(301,421)(302,424)(303,423)
(304,422)(305,401)(306,404)(307,403)(308,402)(309,413)(310,416)(311,415)
(312,414)(313,409)(314,412)(315,411)(316,410)(317,405)(318,408)(319,407)
(320,406)(321,385)(322,388)(323,387)(324,386)(325,397)(326,400)(327,399)
(328,398)(329,393)(330,396)(331,395)(332,394)(333,389)(334,392)(335,391)
(336,390)(337,369)(338,372)(339,371)(340,370)(341,381)(342,384)(343,383)
(344,382)(345,377)(346,380)(347,379)(348,378)(349,373)(350,376)(351,375)
(352,374)(354,356)(357,365)(358,368)(359,367)(360,366)(362,364);
s2 := Sym(432)!(  1,  5)(  2,  6)(  3,  7)(  4,  8)(  9, 13)( 10, 14)( 11, 15)
( 12, 16)( 17, 21)( 18, 22)( 19, 23)( 20, 24)( 25, 29)( 26, 30)( 27, 31)
( 28, 32)( 33, 37)( 34, 38)( 35, 39)( 36, 40)( 41, 45)( 42, 46)( 43, 47)
( 44, 48)( 49, 53)( 50, 54)( 51, 55)( 52, 56)( 57, 61)( 58, 62)( 59, 63)
( 60, 64)( 65, 69)( 66, 70)( 67, 71)( 68, 72)( 73, 77)( 74, 78)( 75, 79)
( 76, 80)( 81, 85)( 82, 86)( 83, 87)( 84, 88)( 89, 93)( 90, 94)( 91, 95)
( 92, 96)( 97,101)( 98,102)( 99,103)(100,104)(105,109)(106,110)(107,111)
(108,112)(113,117)(114,118)(115,119)(116,120)(121,125)(122,126)(123,127)
(124,128)(129,133)(130,134)(131,135)(132,136)(137,141)(138,142)(139,143)
(140,144)(145,149)(146,150)(147,151)(148,152)(153,157)(154,158)(155,159)
(156,160)(161,165)(162,166)(163,167)(164,168)(169,173)(170,174)(171,175)
(172,176)(177,181)(178,182)(179,183)(180,184)(185,189)(186,190)(187,191)
(188,192)(193,197)(194,198)(195,199)(196,200)(201,205)(202,206)(203,207)
(204,208)(209,213)(210,214)(211,215)(212,216)(217,221)(218,222)(219,223)
(220,224)(225,229)(226,230)(227,231)(228,232)(233,237)(234,238)(235,239)
(236,240)(241,245)(242,246)(243,247)(244,248)(249,253)(250,254)(251,255)
(252,256)(257,261)(258,262)(259,263)(260,264)(265,269)(266,270)(267,271)
(268,272)(273,277)(274,278)(275,279)(276,280)(281,285)(282,286)(283,287)
(284,288)(289,293)(290,294)(291,295)(292,296)(297,301)(298,302)(299,303)
(300,304)(305,309)(306,310)(307,311)(308,312)(313,317)(314,318)(315,319)
(316,320)(321,325)(322,326)(323,327)(324,328)(329,333)(330,334)(331,335)
(332,336)(337,341)(338,342)(339,343)(340,344)(345,349)(346,350)(347,351)
(348,352)(353,357)(354,358)(355,359)(356,360)(361,365)(362,366)(363,367)
(364,368)(369,373)(370,374)(371,375)(372,376)(377,381)(378,382)(379,383)
(380,384)(385,389)(386,390)(387,391)(388,392)(393,397)(394,398)(395,399)
(396,400)(401,405)(402,406)(403,407)(404,408)(409,413)(410,414)(411,415)
(412,416)(417,421)(418,422)(419,423)(420,424)(425,429)(426,430)(427,431)
(428,432);
s3 := Sym(432)!(  5,  6)(  7,  8)(  9, 11)( 10, 12)( 13, 16)( 14, 15)( 21, 22)
( 23, 24)( 25, 27)( 26, 28)( 29, 32)( 30, 31)( 37, 38)( 39, 40)( 41, 43)
( 42, 44)( 45, 48)( 46, 47)( 53, 54)( 55, 56)( 57, 59)( 58, 60)( 61, 64)
( 62, 63)( 69, 70)( 71, 72)( 73, 75)( 74, 76)( 77, 80)( 78, 79)( 85, 86)
( 87, 88)( 89, 91)( 90, 92)( 93, 96)( 94, 95)(101,102)(103,104)(105,107)
(106,108)(109,112)(110,111)(117,118)(119,120)(121,123)(122,124)(125,128)
(126,127)(133,134)(135,136)(137,139)(138,140)(141,144)(142,143)(149,150)
(151,152)(153,155)(154,156)(157,160)(158,159)(165,166)(167,168)(169,171)
(170,172)(173,176)(174,175)(181,182)(183,184)(185,187)(186,188)(189,192)
(190,191)(197,198)(199,200)(201,203)(202,204)(205,208)(206,207)(213,214)
(215,216)(217,219)(218,220)(221,224)(222,223)(229,230)(231,232)(233,235)
(234,236)(237,240)(238,239)(245,246)(247,248)(249,251)(250,252)(253,256)
(254,255)(261,262)(263,264)(265,267)(266,268)(269,272)(270,271)(277,278)
(279,280)(281,283)(282,284)(285,288)(286,287)(293,294)(295,296)(297,299)
(298,300)(301,304)(302,303)(309,310)(311,312)(313,315)(314,316)(317,320)
(318,319)(325,326)(327,328)(329,331)(330,332)(333,336)(334,335)(341,342)
(343,344)(345,347)(346,348)(349,352)(350,351)(357,358)(359,360)(361,363)
(362,364)(365,368)(366,367)(373,374)(375,376)(377,379)(378,380)(381,384)
(382,383)(389,390)(391,392)(393,395)(394,396)(397,400)(398,399)(405,406)
(407,408)(409,411)(410,412)(413,416)(414,415)(421,422)(423,424)(425,427)
(426,428)(429,432)(430,431);
poly := sub<Sym(432)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s1*s2*s1*s2*s1*s2, s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s1*s0*s2*s1*s2*s1*s0*s1, s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope