include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,6,36}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,6,36}*1728
Also Known As : {{3,6}4,{6,36|2}}. if this polytope has another name.
Group : SmallGroup(1728,30174)
Rank : 4
Schlafli Type : {3,6,36}
Number of vertices, edges, etc : 4, 12, 144, 36
Order of s0s1s2s3 : 36
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,6,18}*864
3-fold quotients : {3,6,12}*576
6-fold quotients : {3,6,6}*288
9-fold quotients : {3,6,4}*192
18-fold quotients : {3,6,2}*96
36-fold quotients : {3,3,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 7, 8)( 11, 12)( 15, 16)( 19, 20)( 23, 24)( 27, 28)( 31, 32)
( 35, 36)( 37, 73)( 38, 74)( 39, 76)( 40, 75)( 41, 77)( 42, 78)( 43, 80)
( 44, 79)( 45, 81)( 46, 82)( 47, 84)( 48, 83)( 49, 85)( 50, 86)( 51, 88)
( 52, 87)( 53, 89)( 54, 90)( 55, 92)( 56, 91)( 57, 93)( 58, 94)( 59, 96)
( 60, 95)( 61, 97)( 62, 98)( 63,100)( 64, 99)( 65,101)( 66,102)( 67,104)
( 68,103)( 69,105)( 70,106)( 71,108)( 72,107)(111,112)(115,116)(119,120)
(123,124)(127,128)(131,132)(135,136)(139,140)(143,144)(145,181)(146,182)
(147,184)(148,183)(149,185)(150,186)(151,188)(152,187)(153,189)(154,190)
(155,192)(156,191)(157,193)(158,194)(159,196)(160,195)(161,197)(162,198)
(163,200)(164,199)(165,201)(166,202)(167,204)(168,203)(169,205)(170,206)
(171,208)(172,207)(173,209)(174,210)(175,212)(176,211)(177,213)(178,214)
(179,216)(180,215)(219,220)(223,224)(227,228)(231,232)(235,236)(239,240)
(243,244)(247,248)(251,252)(253,289)(254,290)(255,292)(256,291)(257,293)
(258,294)(259,296)(260,295)(261,297)(262,298)(263,300)(264,299)(265,301)
(266,302)(267,304)(268,303)(269,305)(270,306)(271,308)(272,307)(273,309)
(274,310)(275,312)(276,311)(277,313)(278,314)(279,316)(280,315)(281,317)
(282,318)(283,320)(284,319)(285,321)(286,322)(287,324)(288,323)(327,328)
(331,332)(335,336)(339,340)(343,344)(347,348)(351,352)(355,356)(359,360)
(361,397)(362,398)(363,400)(364,399)(365,401)(366,402)(367,404)(368,403)
(369,405)(370,406)(371,408)(372,407)(373,409)(374,410)(375,412)(376,411)
(377,413)(378,414)(379,416)(380,415)(381,417)(382,418)(383,420)(384,419)
(385,421)(386,422)(387,424)(388,423)(389,425)(390,426)(391,428)(392,427)
(393,429)(394,430)(395,432)(396,431);;
s1 := ( 1, 37)( 2, 40)( 3, 39)( 4, 38)( 5, 41)( 6, 44)( 7, 43)( 8, 42)
( 9, 45)( 10, 48)( 11, 47)( 12, 46)( 13, 49)( 14, 52)( 15, 51)( 16, 50)
( 17, 53)( 18, 56)( 19, 55)( 20, 54)( 21, 57)( 22, 60)( 23, 59)( 24, 58)
( 25, 61)( 26, 64)( 27, 63)( 28, 62)( 29, 65)( 30, 68)( 31, 67)( 32, 66)
( 33, 69)( 34, 72)( 35, 71)( 36, 70)( 74, 76)( 78, 80)( 82, 84)( 86, 88)
( 90, 92)( 94, 96)( 98,100)(102,104)(106,108)(109,145)(110,148)(111,147)
(112,146)(113,149)(114,152)(115,151)(116,150)(117,153)(118,156)(119,155)
(120,154)(121,157)(122,160)(123,159)(124,158)(125,161)(126,164)(127,163)
(128,162)(129,165)(130,168)(131,167)(132,166)(133,169)(134,172)(135,171)
(136,170)(137,173)(138,176)(139,175)(140,174)(141,177)(142,180)(143,179)
(144,178)(182,184)(186,188)(190,192)(194,196)(198,200)(202,204)(206,208)
(210,212)(214,216)(217,253)(218,256)(219,255)(220,254)(221,257)(222,260)
(223,259)(224,258)(225,261)(226,264)(227,263)(228,262)(229,265)(230,268)
(231,267)(232,266)(233,269)(234,272)(235,271)(236,270)(237,273)(238,276)
(239,275)(240,274)(241,277)(242,280)(243,279)(244,278)(245,281)(246,284)
(247,283)(248,282)(249,285)(250,288)(251,287)(252,286)(290,292)(294,296)
(298,300)(302,304)(306,308)(310,312)(314,316)(318,320)(322,324)(325,361)
(326,364)(327,363)(328,362)(329,365)(330,368)(331,367)(332,366)(333,369)
(334,372)(335,371)(336,370)(337,373)(338,376)(339,375)(340,374)(341,377)
(342,380)(343,379)(344,378)(345,381)(346,384)(347,383)(348,382)(349,385)
(350,388)(351,387)(352,386)(353,389)(354,392)(355,391)(356,390)(357,393)
(358,396)(359,395)(360,394)(398,400)(402,404)(406,408)(410,412)(414,416)
(418,420)(422,424)(426,428)(430,432);;
s2 := ( 1, 2)( 5, 10)( 6, 9)( 7, 11)( 8, 12)( 13, 34)( 14, 33)( 15, 35)
( 16, 36)( 17, 30)( 18, 29)( 19, 31)( 20, 32)( 21, 26)( 22, 25)( 23, 27)
( 24, 28)( 37, 74)( 38, 73)( 39, 75)( 40, 76)( 41, 82)( 42, 81)( 43, 83)
( 44, 84)( 45, 78)( 46, 77)( 47, 79)( 48, 80)( 49,106)( 50,105)( 51,107)
( 52,108)( 53,102)( 54,101)( 55,103)( 56,104)( 57, 98)( 58, 97)( 59, 99)
( 60,100)( 61, 94)( 62, 93)( 63, 95)( 64, 96)( 65, 90)( 66, 89)( 67, 91)
( 68, 92)( 69, 86)( 70, 85)( 71, 87)( 72, 88)(109,110)(113,118)(114,117)
(115,119)(116,120)(121,142)(122,141)(123,143)(124,144)(125,138)(126,137)
(127,139)(128,140)(129,134)(130,133)(131,135)(132,136)(145,182)(146,181)
(147,183)(148,184)(149,190)(150,189)(151,191)(152,192)(153,186)(154,185)
(155,187)(156,188)(157,214)(158,213)(159,215)(160,216)(161,210)(162,209)
(163,211)(164,212)(165,206)(166,205)(167,207)(168,208)(169,202)(170,201)
(171,203)(172,204)(173,198)(174,197)(175,199)(176,200)(177,194)(178,193)
(179,195)(180,196)(217,326)(218,325)(219,327)(220,328)(221,334)(222,333)
(223,335)(224,336)(225,330)(226,329)(227,331)(228,332)(229,358)(230,357)
(231,359)(232,360)(233,354)(234,353)(235,355)(236,356)(237,350)(238,349)
(239,351)(240,352)(241,346)(242,345)(243,347)(244,348)(245,342)(246,341)
(247,343)(248,344)(249,338)(250,337)(251,339)(252,340)(253,398)(254,397)
(255,399)(256,400)(257,406)(258,405)(259,407)(260,408)(261,402)(262,401)
(263,403)(264,404)(265,430)(266,429)(267,431)(268,432)(269,426)(270,425)
(271,427)(272,428)(273,422)(274,421)(275,423)(276,424)(277,418)(278,417)
(279,419)(280,420)(281,414)(282,413)(283,415)(284,416)(285,410)(286,409)
(287,411)(288,412)(289,362)(290,361)(291,363)(292,364)(293,370)(294,369)
(295,371)(296,372)(297,366)(298,365)(299,367)(300,368)(301,394)(302,393)
(303,395)(304,396)(305,390)(306,389)(307,391)(308,392)(309,386)(310,385)
(311,387)(312,388)(313,382)(314,381)(315,383)(316,384)(317,378)(318,377)
(319,379)(320,380)(321,374)(322,373)(323,375)(324,376);;
s3 := ( 1,229)( 2,230)( 3,231)( 4,232)( 5,237)( 6,238)( 7,239)( 8,240)
( 9,233)( 10,234)( 11,235)( 12,236)( 13,217)( 14,218)( 15,219)( 16,220)
( 17,225)( 18,226)( 19,227)( 20,228)( 21,221)( 22,222)( 23,223)( 24,224)
( 25,249)( 26,250)( 27,251)( 28,252)( 29,245)( 30,246)( 31,247)( 32,248)
( 33,241)( 34,242)( 35,243)( 36,244)( 37,265)( 38,266)( 39,267)( 40,268)
( 41,273)( 42,274)( 43,275)( 44,276)( 45,269)( 46,270)( 47,271)( 48,272)
( 49,253)( 50,254)( 51,255)( 52,256)( 53,261)( 54,262)( 55,263)( 56,264)
( 57,257)( 58,258)( 59,259)( 60,260)( 61,285)( 62,286)( 63,287)( 64,288)
( 65,281)( 66,282)( 67,283)( 68,284)( 69,277)( 70,278)( 71,279)( 72,280)
( 73,301)( 74,302)( 75,303)( 76,304)( 77,309)( 78,310)( 79,311)( 80,312)
( 81,305)( 82,306)( 83,307)( 84,308)( 85,289)( 86,290)( 87,291)( 88,292)
( 89,297)( 90,298)( 91,299)( 92,300)( 93,293)( 94,294)( 95,295)( 96,296)
( 97,321)( 98,322)( 99,323)(100,324)(101,317)(102,318)(103,319)(104,320)
(105,313)(106,314)(107,315)(108,316)(109,337)(110,338)(111,339)(112,340)
(113,345)(114,346)(115,347)(116,348)(117,341)(118,342)(119,343)(120,344)
(121,325)(122,326)(123,327)(124,328)(125,333)(126,334)(127,335)(128,336)
(129,329)(130,330)(131,331)(132,332)(133,357)(134,358)(135,359)(136,360)
(137,353)(138,354)(139,355)(140,356)(141,349)(142,350)(143,351)(144,352)
(145,373)(146,374)(147,375)(148,376)(149,381)(150,382)(151,383)(152,384)
(153,377)(154,378)(155,379)(156,380)(157,361)(158,362)(159,363)(160,364)
(161,369)(162,370)(163,371)(164,372)(165,365)(166,366)(167,367)(168,368)
(169,393)(170,394)(171,395)(172,396)(173,389)(174,390)(175,391)(176,392)
(177,385)(178,386)(179,387)(180,388)(181,409)(182,410)(183,411)(184,412)
(185,417)(186,418)(187,419)(188,420)(189,413)(190,414)(191,415)(192,416)
(193,397)(194,398)(195,399)(196,400)(197,405)(198,406)(199,407)(200,408)
(201,401)(202,402)(203,403)(204,404)(205,429)(206,430)(207,431)(208,432)
(209,425)(210,426)(211,427)(212,428)(213,421)(214,422)(215,423)(216,424);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(432)!( 3, 4)( 7, 8)( 11, 12)( 15, 16)( 19, 20)( 23, 24)( 27, 28)
( 31, 32)( 35, 36)( 37, 73)( 38, 74)( 39, 76)( 40, 75)( 41, 77)( 42, 78)
( 43, 80)( 44, 79)( 45, 81)( 46, 82)( 47, 84)( 48, 83)( 49, 85)( 50, 86)
( 51, 88)( 52, 87)( 53, 89)( 54, 90)( 55, 92)( 56, 91)( 57, 93)( 58, 94)
( 59, 96)( 60, 95)( 61, 97)( 62, 98)( 63,100)( 64, 99)( 65,101)( 66,102)
( 67,104)( 68,103)( 69,105)( 70,106)( 71,108)( 72,107)(111,112)(115,116)
(119,120)(123,124)(127,128)(131,132)(135,136)(139,140)(143,144)(145,181)
(146,182)(147,184)(148,183)(149,185)(150,186)(151,188)(152,187)(153,189)
(154,190)(155,192)(156,191)(157,193)(158,194)(159,196)(160,195)(161,197)
(162,198)(163,200)(164,199)(165,201)(166,202)(167,204)(168,203)(169,205)
(170,206)(171,208)(172,207)(173,209)(174,210)(175,212)(176,211)(177,213)
(178,214)(179,216)(180,215)(219,220)(223,224)(227,228)(231,232)(235,236)
(239,240)(243,244)(247,248)(251,252)(253,289)(254,290)(255,292)(256,291)
(257,293)(258,294)(259,296)(260,295)(261,297)(262,298)(263,300)(264,299)
(265,301)(266,302)(267,304)(268,303)(269,305)(270,306)(271,308)(272,307)
(273,309)(274,310)(275,312)(276,311)(277,313)(278,314)(279,316)(280,315)
(281,317)(282,318)(283,320)(284,319)(285,321)(286,322)(287,324)(288,323)
(327,328)(331,332)(335,336)(339,340)(343,344)(347,348)(351,352)(355,356)
(359,360)(361,397)(362,398)(363,400)(364,399)(365,401)(366,402)(367,404)
(368,403)(369,405)(370,406)(371,408)(372,407)(373,409)(374,410)(375,412)
(376,411)(377,413)(378,414)(379,416)(380,415)(381,417)(382,418)(383,420)
(384,419)(385,421)(386,422)(387,424)(388,423)(389,425)(390,426)(391,428)
(392,427)(393,429)(394,430)(395,432)(396,431);
s1 := Sym(432)!( 1, 37)( 2, 40)( 3, 39)( 4, 38)( 5, 41)( 6, 44)( 7, 43)
( 8, 42)( 9, 45)( 10, 48)( 11, 47)( 12, 46)( 13, 49)( 14, 52)( 15, 51)
( 16, 50)( 17, 53)( 18, 56)( 19, 55)( 20, 54)( 21, 57)( 22, 60)( 23, 59)
( 24, 58)( 25, 61)( 26, 64)( 27, 63)( 28, 62)( 29, 65)( 30, 68)( 31, 67)
( 32, 66)( 33, 69)( 34, 72)( 35, 71)( 36, 70)( 74, 76)( 78, 80)( 82, 84)
( 86, 88)( 90, 92)( 94, 96)( 98,100)(102,104)(106,108)(109,145)(110,148)
(111,147)(112,146)(113,149)(114,152)(115,151)(116,150)(117,153)(118,156)
(119,155)(120,154)(121,157)(122,160)(123,159)(124,158)(125,161)(126,164)
(127,163)(128,162)(129,165)(130,168)(131,167)(132,166)(133,169)(134,172)
(135,171)(136,170)(137,173)(138,176)(139,175)(140,174)(141,177)(142,180)
(143,179)(144,178)(182,184)(186,188)(190,192)(194,196)(198,200)(202,204)
(206,208)(210,212)(214,216)(217,253)(218,256)(219,255)(220,254)(221,257)
(222,260)(223,259)(224,258)(225,261)(226,264)(227,263)(228,262)(229,265)
(230,268)(231,267)(232,266)(233,269)(234,272)(235,271)(236,270)(237,273)
(238,276)(239,275)(240,274)(241,277)(242,280)(243,279)(244,278)(245,281)
(246,284)(247,283)(248,282)(249,285)(250,288)(251,287)(252,286)(290,292)
(294,296)(298,300)(302,304)(306,308)(310,312)(314,316)(318,320)(322,324)
(325,361)(326,364)(327,363)(328,362)(329,365)(330,368)(331,367)(332,366)
(333,369)(334,372)(335,371)(336,370)(337,373)(338,376)(339,375)(340,374)
(341,377)(342,380)(343,379)(344,378)(345,381)(346,384)(347,383)(348,382)
(349,385)(350,388)(351,387)(352,386)(353,389)(354,392)(355,391)(356,390)
(357,393)(358,396)(359,395)(360,394)(398,400)(402,404)(406,408)(410,412)
(414,416)(418,420)(422,424)(426,428)(430,432);
s2 := Sym(432)!( 1, 2)( 5, 10)( 6, 9)( 7, 11)( 8, 12)( 13, 34)( 14, 33)
( 15, 35)( 16, 36)( 17, 30)( 18, 29)( 19, 31)( 20, 32)( 21, 26)( 22, 25)
( 23, 27)( 24, 28)( 37, 74)( 38, 73)( 39, 75)( 40, 76)( 41, 82)( 42, 81)
( 43, 83)( 44, 84)( 45, 78)( 46, 77)( 47, 79)( 48, 80)( 49,106)( 50,105)
( 51,107)( 52,108)( 53,102)( 54,101)( 55,103)( 56,104)( 57, 98)( 58, 97)
( 59, 99)( 60,100)( 61, 94)( 62, 93)( 63, 95)( 64, 96)( 65, 90)( 66, 89)
( 67, 91)( 68, 92)( 69, 86)( 70, 85)( 71, 87)( 72, 88)(109,110)(113,118)
(114,117)(115,119)(116,120)(121,142)(122,141)(123,143)(124,144)(125,138)
(126,137)(127,139)(128,140)(129,134)(130,133)(131,135)(132,136)(145,182)
(146,181)(147,183)(148,184)(149,190)(150,189)(151,191)(152,192)(153,186)
(154,185)(155,187)(156,188)(157,214)(158,213)(159,215)(160,216)(161,210)
(162,209)(163,211)(164,212)(165,206)(166,205)(167,207)(168,208)(169,202)
(170,201)(171,203)(172,204)(173,198)(174,197)(175,199)(176,200)(177,194)
(178,193)(179,195)(180,196)(217,326)(218,325)(219,327)(220,328)(221,334)
(222,333)(223,335)(224,336)(225,330)(226,329)(227,331)(228,332)(229,358)
(230,357)(231,359)(232,360)(233,354)(234,353)(235,355)(236,356)(237,350)
(238,349)(239,351)(240,352)(241,346)(242,345)(243,347)(244,348)(245,342)
(246,341)(247,343)(248,344)(249,338)(250,337)(251,339)(252,340)(253,398)
(254,397)(255,399)(256,400)(257,406)(258,405)(259,407)(260,408)(261,402)
(262,401)(263,403)(264,404)(265,430)(266,429)(267,431)(268,432)(269,426)
(270,425)(271,427)(272,428)(273,422)(274,421)(275,423)(276,424)(277,418)
(278,417)(279,419)(280,420)(281,414)(282,413)(283,415)(284,416)(285,410)
(286,409)(287,411)(288,412)(289,362)(290,361)(291,363)(292,364)(293,370)
(294,369)(295,371)(296,372)(297,366)(298,365)(299,367)(300,368)(301,394)
(302,393)(303,395)(304,396)(305,390)(306,389)(307,391)(308,392)(309,386)
(310,385)(311,387)(312,388)(313,382)(314,381)(315,383)(316,384)(317,378)
(318,377)(319,379)(320,380)(321,374)(322,373)(323,375)(324,376);
s3 := Sym(432)!( 1,229)( 2,230)( 3,231)( 4,232)( 5,237)( 6,238)( 7,239)
( 8,240)( 9,233)( 10,234)( 11,235)( 12,236)( 13,217)( 14,218)( 15,219)
( 16,220)( 17,225)( 18,226)( 19,227)( 20,228)( 21,221)( 22,222)( 23,223)
( 24,224)( 25,249)( 26,250)( 27,251)( 28,252)( 29,245)( 30,246)( 31,247)
( 32,248)( 33,241)( 34,242)( 35,243)( 36,244)( 37,265)( 38,266)( 39,267)
( 40,268)( 41,273)( 42,274)( 43,275)( 44,276)( 45,269)( 46,270)( 47,271)
( 48,272)( 49,253)( 50,254)( 51,255)( 52,256)( 53,261)( 54,262)( 55,263)
( 56,264)( 57,257)( 58,258)( 59,259)( 60,260)( 61,285)( 62,286)( 63,287)
( 64,288)( 65,281)( 66,282)( 67,283)( 68,284)( 69,277)( 70,278)( 71,279)
( 72,280)( 73,301)( 74,302)( 75,303)( 76,304)( 77,309)( 78,310)( 79,311)
( 80,312)( 81,305)( 82,306)( 83,307)( 84,308)( 85,289)( 86,290)( 87,291)
( 88,292)( 89,297)( 90,298)( 91,299)( 92,300)( 93,293)( 94,294)( 95,295)
( 96,296)( 97,321)( 98,322)( 99,323)(100,324)(101,317)(102,318)(103,319)
(104,320)(105,313)(106,314)(107,315)(108,316)(109,337)(110,338)(111,339)
(112,340)(113,345)(114,346)(115,347)(116,348)(117,341)(118,342)(119,343)
(120,344)(121,325)(122,326)(123,327)(124,328)(125,333)(126,334)(127,335)
(128,336)(129,329)(130,330)(131,331)(132,332)(133,357)(134,358)(135,359)
(136,360)(137,353)(138,354)(139,355)(140,356)(141,349)(142,350)(143,351)
(144,352)(145,373)(146,374)(147,375)(148,376)(149,381)(150,382)(151,383)
(152,384)(153,377)(154,378)(155,379)(156,380)(157,361)(158,362)(159,363)
(160,364)(161,369)(162,370)(163,371)(164,372)(165,365)(166,366)(167,367)
(168,368)(169,393)(170,394)(171,395)(172,396)(173,389)(174,390)(175,391)
(176,392)(177,385)(178,386)(179,387)(180,388)(181,409)(182,410)(183,411)
(184,412)(185,417)(186,418)(187,419)(188,420)(189,413)(190,414)(191,415)
(192,416)(193,397)(194,398)(195,399)(196,400)(197,405)(198,406)(199,407)
(200,408)(201,401)(202,402)(203,403)(204,404)(205,429)(206,430)(207,431)
(208,432)(209,425)(210,426)(211,427)(212,428)(213,421)(214,422)(215,423)
(216,424);
poly := sub<Sym(432)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
References : None.
to this polytope