Polytope of Type {36,4,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {36,4,3}*1728
Also Known As : {{36,4|2},{4,3}}. if this polytope has another name.
Group : SmallGroup(1728,30174)
Rank : 4
Schlafli Type : {36,4,3}
Number of vertices, edges, etc : 36, 144, 12, 6
Order of s0s1s2s3 : 36
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {18,4,3}*864
   3-fold quotients : {12,4,3}*576
   4-fold quotients : {36,2,3}*432
   6-fold quotients : {6,4,3}*288
   8-fold quotients : {18,2,3}*216
   9-fold quotients : {4,4,3}*192b
   12-fold quotients : {12,2,3}*144
   16-fold quotients : {9,2,3}*108
   18-fold quotients : {2,4,3}*96
   24-fold quotients : {6,2,3}*72
   36-fold quotients : {4,2,3}*48, {2,4,3}*48
   48-fold quotients : {3,2,3}*36
   72-fold quotients : {2,2,3}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  5,  9)(  6, 10)(  7, 11)(  8, 12)( 13, 33)( 14, 34)( 15, 35)( 16, 36)
( 17, 29)( 18, 30)( 19, 31)( 20, 32)( 21, 25)( 22, 26)( 23, 27)( 24, 28)
( 41, 45)( 42, 46)( 43, 47)( 44, 48)( 49, 69)( 50, 70)( 51, 71)( 52, 72)
( 53, 65)( 54, 66)( 55, 67)( 56, 68)( 57, 61)( 58, 62)( 59, 63)( 60, 64)
( 77, 81)( 78, 82)( 79, 83)( 80, 84)( 85,105)( 86,106)( 87,107)( 88,108)
( 89,101)( 90,102)( 91,103)( 92,104)( 93, 97)( 94, 98)( 95, 99)( 96,100)
(113,117)(114,118)(115,119)(116,120)(121,141)(122,142)(123,143)(124,144)
(125,137)(126,138)(127,139)(128,140)(129,133)(130,134)(131,135)(132,136)
(149,153)(150,154)(151,155)(152,156)(157,177)(158,178)(159,179)(160,180)
(161,173)(162,174)(163,175)(164,176)(165,169)(166,170)(167,171)(168,172)
(185,189)(186,190)(187,191)(188,192)(193,213)(194,214)(195,215)(196,216)
(197,209)(198,210)(199,211)(200,212)(201,205)(202,206)(203,207)(204,208)
(217,325)(218,326)(219,327)(220,328)(221,333)(222,334)(223,335)(224,336)
(225,329)(226,330)(227,331)(228,332)(229,357)(230,358)(231,359)(232,360)
(233,353)(234,354)(235,355)(236,356)(237,349)(238,350)(239,351)(240,352)
(241,345)(242,346)(243,347)(244,348)(245,341)(246,342)(247,343)(248,344)
(249,337)(250,338)(251,339)(252,340)(253,361)(254,362)(255,363)(256,364)
(257,369)(258,370)(259,371)(260,372)(261,365)(262,366)(263,367)(264,368)
(265,393)(266,394)(267,395)(268,396)(269,389)(270,390)(271,391)(272,392)
(273,385)(274,386)(275,387)(276,388)(277,381)(278,382)(279,383)(280,384)
(281,377)(282,378)(283,379)(284,380)(285,373)(286,374)(287,375)(288,376)
(289,397)(290,398)(291,399)(292,400)(293,405)(294,406)(295,407)(296,408)
(297,401)(298,402)(299,403)(300,404)(301,429)(302,430)(303,431)(304,432)
(305,425)(306,426)(307,427)(308,428)(309,421)(310,422)(311,423)(312,424)
(313,417)(314,418)(315,419)(316,420)(317,413)(318,414)(319,415)(320,416)
(321,409)(322,410)(323,411)(324,412);;
s1 := (  1,231)(  2,232)(  3,229)(  4,230)(  5,239)(  6,240)(  7,237)(  8,238)
(  9,235)( 10,236)( 11,233)( 12,234)( 13,219)( 14,220)( 15,217)( 16,218)
( 17,227)( 18,228)( 19,225)( 20,226)( 21,223)( 22,224)( 23,221)( 24,222)
( 25,251)( 26,252)( 27,249)( 28,250)( 29,247)( 30,248)( 31,245)( 32,246)
( 33,243)( 34,244)( 35,241)( 36,242)( 37,267)( 38,268)( 39,265)( 40,266)
( 41,275)( 42,276)( 43,273)( 44,274)( 45,271)( 46,272)( 47,269)( 48,270)
( 49,255)( 50,256)( 51,253)( 52,254)( 53,263)( 54,264)( 55,261)( 56,262)
( 57,259)( 58,260)( 59,257)( 60,258)( 61,287)( 62,288)( 63,285)( 64,286)
( 65,283)( 66,284)( 67,281)( 68,282)( 69,279)( 70,280)( 71,277)( 72,278)
( 73,303)( 74,304)( 75,301)( 76,302)( 77,311)( 78,312)( 79,309)( 80,310)
( 81,307)( 82,308)( 83,305)( 84,306)( 85,291)( 86,292)( 87,289)( 88,290)
( 89,299)( 90,300)( 91,297)( 92,298)( 93,295)( 94,296)( 95,293)( 96,294)
( 97,323)( 98,324)( 99,321)(100,322)(101,319)(102,320)(103,317)(104,318)
(105,315)(106,316)(107,313)(108,314)(109,339)(110,340)(111,337)(112,338)
(113,347)(114,348)(115,345)(116,346)(117,343)(118,344)(119,341)(120,342)
(121,327)(122,328)(123,325)(124,326)(125,335)(126,336)(127,333)(128,334)
(129,331)(130,332)(131,329)(132,330)(133,359)(134,360)(135,357)(136,358)
(137,355)(138,356)(139,353)(140,354)(141,351)(142,352)(143,349)(144,350)
(145,375)(146,376)(147,373)(148,374)(149,383)(150,384)(151,381)(152,382)
(153,379)(154,380)(155,377)(156,378)(157,363)(158,364)(159,361)(160,362)
(161,371)(162,372)(163,369)(164,370)(165,367)(166,368)(167,365)(168,366)
(169,395)(170,396)(171,393)(172,394)(173,391)(174,392)(175,389)(176,390)
(177,387)(178,388)(179,385)(180,386)(181,411)(182,412)(183,409)(184,410)
(185,419)(186,420)(187,417)(188,418)(189,415)(190,416)(191,413)(192,414)
(193,399)(194,400)(195,397)(196,398)(197,407)(198,408)(199,405)(200,406)
(201,403)(202,404)(203,401)(204,402)(205,431)(206,432)(207,429)(208,430)
(209,427)(210,428)(211,425)(212,426)(213,423)(214,424)(215,421)(216,422);;
s2 := (  3,  4)(  7,  8)( 11, 12)( 15, 16)( 19, 20)( 23, 24)( 27, 28)( 31, 32)
( 35, 36)( 37, 73)( 38, 74)( 39, 76)( 40, 75)( 41, 77)( 42, 78)( 43, 80)
( 44, 79)( 45, 81)( 46, 82)( 47, 84)( 48, 83)( 49, 85)( 50, 86)( 51, 88)
( 52, 87)( 53, 89)( 54, 90)( 55, 92)( 56, 91)( 57, 93)( 58, 94)( 59, 96)
( 60, 95)( 61, 97)( 62, 98)( 63,100)( 64, 99)( 65,101)( 66,102)( 67,104)
( 68,103)( 69,105)( 70,106)( 71,108)( 72,107)(111,112)(115,116)(119,120)
(123,124)(127,128)(131,132)(135,136)(139,140)(143,144)(145,181)(146,182)
(147,184)(148,183)(149,185)(150,186)(151,188)(152,187)(153,189)(154,190)
(155,192)(156,191)(157,193)(158,194)(159,196)(160,195)(161,197)(162,198)
(163,200)(164,199)(165,201)(166,202)(167,204)(168,203)(169,205)(170,206)
(171,208)(172,207)(173,209)(174,210)(175,212)(176,211)(177,213)(178,214)
(179,216)(180,215)(219,220)(223,224)(227,228)(231,232)(235,236)(239,240)
(243,244)(247,248)(251,252)(253,289)(254,290)(255,292)(256,291)(257,293)
(258,294)(259,296)(260,295)(261,297)(262,298)(263,300)(264,299)(265,301)
(266,302)(267,304)(268,303)(269,305)(270,306)(271,308)(272,307)(273,309)
(274,310)(275,312)(276,311)(277,313)(278,314)(279,316)(280,315)(281,317)
(282,318)(283,320)(284,319)(285,321)(286,322)(287,324)(288,323)(327,328)
(331,332)(335,336)(339,340)(343,344)(347,348)(351,352)(355,356)(359,360)
(361,397)(362,398)(363,400)(364,399)(365,401)(366,402)(367,404)(368,403)
(369,405)(370,406)(371,408)(372,407)(373,409)(374,410)(375,412)(376,411)
(377,413)(378,414)(379,416)(380,415)(381,417)(382,418)(383,420)(384,419)
(385,421)(386,422)(387,424)(388,423)(389,425)(390,426)(391,428)(392,427)
(393,429)(394,430)(395,432)(396,431);;
s3 := (  1, 37)(  2, 40)(  3, 39)(  4, 38)(  5, 41)(  6, 44)(  7, 43)(  8, 42)
(  9, 45)( 10, 48)( 11, 47)( 12, 46)( 13, 49)( 14, 52)( 15, 51)( 16, 50)
( 17, 53)( 18, 56)( 19, 55)( 20, 54)( 21, 57)( 22, 60)( 23, 59)( 24, 58)
( 25, 61)( 26, 64)( 27, 63)( 28, 62)( 29, 65)( 30, 68)( 31, 67)( 32, 66)
( 33, 69)( 34, 72)( 35, 71)( 36, 70)( 74, 76)( 78, 80)( 82, 84)( 86, 88)
( 90, 92)( 94, 96)( 98,100)(102,104)(106,108)(109,145)(110,148)(111,147)
(112,146)(113,149)(114,152)(115,151)(116,150)(117,153)(118,156)(119,155)
(120,154)(121,157)(122,160)(123,159)(124,158)(125,161)(126,164)(127,163)
(128,162)(129,165)(130,168)(131,167)(132,166)(133,169)(134,172)(135,171)
(136,170)(137,173)(138,176)(139,175)(140,174)(141,177)(142,180)(143,179)
(144,178)(182,184)(186,188)(190,192)(194,196)(198,200)(202,204)(206,208)
(210,212)(214,216)(217,253)(218,256)(219,255)(220,254)(221,257)(222,260)
(223,259)(224,258)(225,261)(226,264)(227,263)(228,262)(229,265)(230,268)
(231,267)(232,266)(233,269)(234,272)(235,271)(236,270)(237,273)(238,276)
(239,275)(240,274)(241,277)(242,280)(243,279)(244,278)(245,281)(246,284)
(247,283)(248,282)(249,285)(250,288)(251,287)(252,286)(290,292)(294,296)
(298,300)(302,304)(306,308)(310,312)(314,316)(318,320)(322,324)(325,361)
(326,364)(327,363)(328,362)(329,365)(330,368)(331,367)(332,366)(333,369)
(334,372)(335,371)(336,370)(337,373)(338,376)(339,375)(340,374)(341,377)
(342,380)(343,379)(344,378)(345,381)(346,384)(347,383)(348,382)(349,385)
(350,388)(351,387)(352,386)(353,389)(354,392)(355,391)(356,390)(357,393)
(358,396)(359,395)(360,394)(398,400)(402,404)(406,408)(410,412)(414,416)
(418,420)(422,424)(426,428)(430,432);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3*s2*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(432)!(  5,  9)(  6, 10)(  7, 11)(  8, 12)( 13, 33)( 14, 34)( 15, 35)
( 16, 36)( 17, 29)( 18, 30)( 19, 31)( 20, 32)( 21, 25)( 22, 26)( 23, 27)
( 24, 28)( 41, 45)( 42, 46)( 43, 47)( 44, 48)( 49, 69)( 50, 70)( 51, 71)
( 52, 72)( 53, 65)( 54, 66)( 55, 67)( 56, 68)( 57, 61)( 58, 62)( 59, 63)
( 60, 64)( 77, 81)( 78, 82)( 79, 83)( 80, 84)( 85,105)( 86,106)( 87,107)
( 88,108)( 89,101)( 90,102)( 91,103)( 92,104)( 93, 97)( 94, 98)( 95, 99)
( 96,100)(113,117)(114,118)(115,119)(116,120)(121,141)(122,142)(123,143)
(124,144)(125,137)(126,138)(127,139)(128,140)(129,133)(130,134)(131,135)
(132,136)(149,153)(150,154)(151,155)(152,156)(157,177)(158,178)(159,179)
(160,180)(161,173)(162,174)(163,175)(164,176)(165,169)(166,170)(167,171)
(168,172)(185,189)(186,190)(187,191)(188,192)(193,213)(194,214)(195,215)
(196,216)(197,209)(198,210)(199,211)(200,212)(201,205)(202,206)(203,207)
(204,208)(217,325)(218,326)(219,327)(220,328)(221,333)(222,334)(223,335)
(224,336)(225,329)(226,330)(227,331)(228,332)(229,357)(230,358)(231,359)
(232,360)(233,353)(234,354)(235,355)(236,356)(237,349)(238,350)(239,351)
(240,352)(241,345)(242,346)(243,347)(244,348)(245,341)(246,342)(247,343)
(248,344)(249,337)(250,338)(251,339)(252,340)(253,361)(254,362)(255,363)
(256,364)(257,369)(258,370)(259,371)(260,372)(261,365)(262,366)(263,367)
(264,368)(265,393)(266,394)(267,395)(268,396)(269,389)(270,390)(271,391)
(272,392)(273,385)(274,386)(275,387)(276,388)(277,381)(278,382)(279,383)
(280,384)(281,377)(282,378)(283,379)(284,380)(285,373)(286,374)(287,375)
(288,376)(289,397)(290,398)(291,399)(292,400)(293,405)(294,406)(295,407)
(296,408)(297,401)(298,402)(299,403)(300,404)(301,429)(302,430)(303,431)
(304,432)(305,425)(306,426)(307,427)(308,428)(309,421)(310,422)(311,423)
(312,424)(313,417)(314,418)(315,419)(316,420)(317,413)(318,414)(319,415)
(320,416)(321,409)(322,410)(323,411)(324,412);
s1 := Sym(432)!(  1,231)(  2,232)(  3,229)(  4,230)(  5,239)(  6,240)(  7,237)
(  8,238)(  9,235)( 10,236)( 11,233)( 12,234)( 13,219)( 14,220)( 15,217)
( 16,218)( 17,227)( 18,228)( 19,225)( 20,226)( 21,223)( 22,224)( 23,221)
( 24,222)( 25,251)( 26,252)( 27,249)( 28,250)( 29,247)( 30,248)( 31,245)
( 32,246)( 33,243)( 34,244)( 35,241)( 36,242)( 37,267)( 38,268)( 39,265)
( 40,266)( 41,275)( 42,276)( 43,273)( 44,274)( 45,271)( 46,272)( 47,269)
( 48,270)( 49,255)( 50,256)( 51,253)( 52,254)( 53,263)( 54,264)( 55,261)
( 56,262)( 57,259)( 58,260)( 59,257)( 60,258)( 61,287)( 62,288)( 63,285)
( 64,286)( 65,283)( 66,284)( 67,281)( 68,282)( 69,279)( 70,280)( 71,277)
( 72,278)( 73,303)( 74,304)( 75,301)( 76,302)( 77,311)( 78,312)( 79,309)
( 80,310)( 81,307)( 82,308)( 83,305)( 84,306)( 85,291)( 86,292)( 87,289)
( 88,290)( 89,299)( 90,300)( 91,297)( 92,298)( 93,295)( 94,296)( 95,293)
( 96,294)( 97,323)( 98,324)( 99,321)(100,322)(101,319)(102,320)(103,317)
(104,318)(105,315)(106,316)(107,313)(108,314)(109,339)(110,340)(111,337)
(112,338)(113,347)(114,348)(115,345)(116,346)(117,343)(118,344)(119,341)
(120,342)(121,327)(122,328)(123,325)(124,326)(125,335)(126,336)(127,333)
(128,334)(129,331)(130,332)(131,329)(132,330)(133,359)(134,360)(135,357)
(136,358)(137,355)(138,356)(139,353)(140,354)(141,351)(142,352)(143,349)
(144,350)(145,375)(146,376)(147,373)(148,374)(149,383)(150,384)(151,381)
(152,382)(153,379)(154,380)(155,377)(156,378)(157,363)(158,364)(159,361)
(160,362)(161,371)(162,372)(163,369)(164,370)(165,367)(166,368)(167,365)
(168,366)(169,395)(170,396)(171,393)(172,394)(173,391)(174,392)(175,389)
(176,390)(177,387)(178,388)(179,385)(180,386)(181,411)(182,412)(183,409)
(184,410)(185,419)(186,420)(187,417)(188,418)(189,415)(190,416)(191,413)
(192,414)(193,399)(194,400)(195,397)(196,398)(197,407)(198,408)(199,405)
(200,406)(201,403)(202,404)(203,401)(204,402)(205,431)(206,432)(207,429)
(208,430)(209,427)(210,428)(211,425)(212,426)(213,423)(214,424)(215,421)
(216,422);
s2 := Sym(432)!(  3,  4)(  7,  8)( 11, 12)( 15, 16)( 19, 20)( 23, 24)( 27, 28)
( 31, 32)( 35, 36)( 37, 73)( 38, 74)( 39, 76)( 40, 75)( 41, 77)( 42, 78)
( 43, 80)( 44, 79)( 45, 81)( 46, 82)( 47, 84)( 48, 83)( 49, 85)( 50, 86)
( 51, 88)( 52, 87)( 53, 89)( 54, 90)( 55, 92)( 56, 91)( 57, 93)( 58, 94)
( 59, 96)( 60, 95)( 61, 97)( 62, 98)( 63,100)( 64, 99)( 65,101)( 66,102)
( 67,104)( 68,103)( 69,105)( 70,106)( 71,108)( 72,107)(111,112)(115,116)
(119,120)(123,124)(127,128)(131,132)(135,136)(139,140)(143,144)(145,181)
(146,182)(147,184)(148,183)(149,185)(150,186)(151,188)(152,187)(153,189)
(154,190)(155,192)(156,191)(157,193)(158,194)(159,196)(160,195)(161,197)
(162,198)(163,200)(164,199)(165,201)(166,202)(167,204)(168,203)(169,205)
(170,206)(171,208)(172,207)(173,209)(174,210)(175,212)(176,211)(177,213)
(178,214)(179,216)(180,215)(219,220)(223,224)(227,228)(231,232)(235,236)
(239,240)(243,244)(247,248)(251,252)(253,289)(254,290)(255,292)(256,291)
(257,293)(258,294)(259,296)(260,295)(261,297)(262,298)(263,300)(264,299)
(265,301)(266,302)(267,304)(268,303)(269,305)(270,306)(271,308)(272,307)
(273,309)(274,310)(275,312)(276,311)(277,313)(278,314)(279,316)(280,315)
(281,317)(282,318)(283,320)(284,319)(285,321)(286,322)(287,324)(288,323)
(327,328)(331,332)(335,336)(339,340)(343,344)(347,348)(351,352)(355,356)
(359,360)(361,397)(362,398)(363,400)(364,399)(365,401)(366,402)(367,404)
(368,403)(369,405)(370,406)(371,408)(372,407)(373,409)(374,410)(375,412)
(376,411)(377,413)(378,414)(379,416)(380,415)(381,417)(382,418)(383,420)
(384,419)(385,421)(386,422)(387,424)(388,423)(389,425)(390,426)(391,428)
(392,427)(393,429)(394,430)(395,432)(396,431);
s3 := Sym(432)!(  1, 37)(  2, 40)(  3, 39)(  4, 38)(  5, 41)(  6, 44)(  7, 43)
(  8, 42)(  9, 45)( 10, 48)( 11, 47)( 12, 46)( 13, 49)( 14, 52)( 15, 51)
( 16, 50)( 17, 53)( 18, 56)( 19, 55)( 20, 54)( 21, 57)( 22, 60)( 23, 59)
( 24, 58)( 25, 61)( 26, 64)( 27, 63)( 28, 62)( 29, 65)( 30, 68)( 31, 67)
( 32, 66)( 33, 69)( 34, 72)( 35, 71)( 36, 70)( 74, 76)( 78, 80)( 82, 84)
( 86, 88)( 90, 92)( 94, 96)( 98,100)(102,104)(106,108)(109,145)(110,148)
(111,147)(112,146)(113,149)(114,152)(115,151)(116,150)(117,153)(118,156)
(119,155)(120,154)(121,157)(122,160)(123,159)(124,158)(125,161)(126,164)
(127,163)(128,162)(129,165)(130,168)(131,167)(132,166)(133,169)(134,172)
(135,171)(136,170)(137,173)(138,176)(139,175)(140,174)(141,177)(142,180)
(143,179)(144,178)(182,184)(186,188)(190,192)(194,196)(198,200)(202,204)
(206,208)(210,212)(214,216)(217,253)(218,256)(219,255)(220,254)(221,257)
(222,260)(223,259)(224,258)(225,261)(226,264)(227,263)(228,262)(229,265)
(230,268)(231,267)(232,266)(233,269)(234,272)(235,271)(236,270)(237,273)
(238,276)(239,275)(240,274)(241,277)(242,280)(243,279)(244,278)(245,281)
(246,284)(247,283)(248,282)(249,285)(250,288)(251,287)(252,286)(290,292)
(294,296)(298,300)(302,304)(306,308)(310,312)(314,316)(318,320)(322,324)
(325,361)(326,364)(327,363)(328,362)(329,365)(330,368)(331,367)(332,366)
(333,369)(334,372)(335,371)(336,370)(337,373)(338,376)(339,375)(340,374)
(341,377)(342,380)(343,379)(344,378)(345,381)(346,384)(347,383)(348,382)
(349,385)(350,388)(351,387)(352,386)(353,389)(354,392)(355,391)(356,390)
(357,393)(358,396)(359,395)(360,394)(398,400)(402,404)(406,408)(410,412)
(414,416)(418,420)(422,424)(426,428)(430,432);
poly := sub<Sym(432)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope