Polytope of Type {18,8,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {18,8,3}*1728
if this polytope has a name.
Group : SmallGroup(1728,30201)
Rank : 4
Schlafli Type : {18,8,3}
Number of vertices, edges, etc : 18, 144, 24, 6
Order of s0s1s2s3 : 36
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {18,4,3}*864
   3-fold quotients : {6,8,3}*576
   6-fold quotients : {6,4,3}*288
   8-fold quotients : {18,2,3}*216
   9-fold quotients : {2,8,3}*192
   16-fold quotients : {9,2,3}*108
   18-fold quotients : {2,4,3}*96
   24-fold quotients : {6,2,3}*72
   36-fold quotients : {2,4,3}*48
   48-fold quotients : {3,2,3}*36
   72-fold quotients : {2,2,3}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  9, 17)( 10, 18)( 11, 19)( 12, 20)( 13, 21)( 14, 22)( 15, 23)( 16, 24)
( 25, 65)( 26, 66)( 27, 67)( 28, 68)( 29, 69)( 30, 70)( 31, 71)( 32, 72)
( 33, 57)( 34, 58)( 35, 59)( 36, 60)( 37, 61)( 38, 62)( 39, 63)( 40, 64)
( 41, 49)( 42, 50)( 43, 51)( 44, 52)( 45, 53)( 46, 54)( 47, 55)( 48, 56)
( 81, 89)( 82, 90)( 83, 91)( 84, 92)( 85, 93)( 86, 94)( 87, 95)( 88, 96)
( 97,137)( 98,138)( 99,139)(100,140)(101,141)(102,142)(103,143)(104,144)
(105,129)(106,130)(107,131)(108,132)(109,133)(110,134)(111,135)(112,136)
(113,121)(114,122)(115,123)(116,124)(117,125)(118,126)(119,127)(120,128)
(153,161)(154,162)(155,163)(156,164)(157,165)(158,166)(159,167)(160,168)
(169,209)(170,210)(171,211)(172,212)(173,213)(174,214)(175,215)(176,216)
(177,201)(178,202)(179,203)(180,204)(181,205)(182,206)(183,207)(184,208)
(185,193)(186,194)(187,195)(188,196)(189,197)(190,198)(191,199)(192,200)
(225,233)(226,234)(227,235)(228,236)(229,237)(230,238)(231,239)(232,240)
(241,281)(242,282)(243,283)(244,284)(245,285)(246,286)(247,287)(248,288)
(249,273)(250,274)(251,275)(252,276)(253,277)(254,278)(255,279)(256,280)
(257,265)(258,266)(259,267)(260,268)(261,269)(262,270)(263,271)(264,272)
(297,305)(298,306)(299,307)(300,308)(301,309)(302,310)(303,311)(304,312)
(313,353)(314,354)(315,355)(316,356)(317,357)(318,358)(319,359)(320,360)
(321,345)(322,346)(323,347)(324,348)(325,349)(326,350)(327,351)(328,352)
(329,337)(330,338)(331,339)(332,340)(333,341)(334,342)(335,343)(336,344)
(369,377)(370,378)(371,379)(372,380)(373,381)(374,382)(375,383)(376,384)
(385,425)(386,426)(387,427)(388,428)(389,429)(390,430)(391,431)(392,432)
(393,417)(394,418)(395,419)(396,420)(397,421)(398,422)(399,423)(400,424)
(401,409)(402,410)(403,411)(404,412)(405,413)(406,414)(407,415)(408,416);;
s1 := (  1,245)(  2,246)(  3,248)(  4,247)(  5,242)(  6,241)(  7,243)(  8,244)
(  9,261)( 10,262)( 11,264)( 12,263)( 13,258)( 14,257)( 15,259)( 16,260)
( 17,253)( 18,254)( 19,256)( 20,255)( 21,250)( 22,249)( 23,251)( 24,252)
( 25,221)( 26,222)( 27,224)( 28,223)( 29,218)( 30,217)( 31,219)( 32,220)
( 33,237)( 34,238)( 35,240)( 36,239)( 37,234)( 38,233)( 39,235)( 40,236)
( 41,229)( 42,230)( 43,232)( 44,231)( 45,226)( 46,225)( 47,227)( 48,228)
( 49,285)( 50,286)( 51,288)( 52,287)( 53,282)( 54,281)( 55,283)( 56,284)
( 57,277)( 58,278)( 59,280)( 60,279)( 61,274)( 62,273)( 63,275)( 64,276)
( 65,269)( 66,270)( 67,272)( 68,271)( 69,266)( 70,265)( 71,267)( 72,268)
( 73,317)( 74,318)( 75,320)( 76,319)( 77,314)( 78,313)( 79,315)( 80,316)
( 81,333)( 82,334)( 83,336)( 84,335)( 85,330)( 86,329)( 87,331)( 88,332)
( 89,325)( 90,326)( 91,328)( 92,327)( 93,322)( 94,321)( 95,323)( 96,324)
( 97,293)( 98,294)( 99,296)(100,295)(101,290)(102,289)(103,291)(104,292)
(105,309)(106,310)(107,312)(108,311)(109,306)(110,305)(111,307)(112,308)
(113,301)(114,302)(115,304)(116,303)(117,298)(118,297)(119,299)(120,300)
(121,357)(122,358)(123,360)(124,359)(125,354)(126,353)(127,355)(128,356)
(129,349)(130,350)(131,352)(132,351)(133,346)(134,345)(135,347)(136,348)
(137,341)(138,342)(139,344)(140,343)(141,338)(142,337)(143,339)(144,340)
(145,389)(146,390)(147,392)(148,391)(149,386)(150,385)(151,387)(152,388)
(153,405)(154,406)(155,408)(156,407)(157,402)(158,401)(159,403)(160,404)
(161,397)(162,398)(163,400)(164,399)(165,394)(166,393)(167,395)(168,396)
(169,365)(170,366)(171,368)(172,367)(173,362)(174,361)(175,363)(176,364)
(177,381)(178,382)(179,384)(180,383)(181,378)(182,377)(183,379)(184,380)
(185,373)(186,374)(187,376)(188,375)(189,370)(190,369)(191,371)(192,372)
(193,429)(194,430)(195,432)(196,431)(197,426)(198,425)(199,427)(200,428)
(201,421)(202,422)(203,424)(204,423)(205,418)(206,417)(207,419)(208,420)
(209,413)(210,414)(211,416)(212,415)(213,410)(214,409)(215,411)(216,412);;
s2 := (  3,  4)(  5,  7)(  6,  8)( 11, 12)( 13, 15)( 14, 16)( 19, 20)( 21, 23)
( 22, 24)( 27, 28)( 29, 31)( 30, 32)( 35, 36)( 37, 39)( 38, 40)( 43, 44)
( 45, 47)( 46, 48)( 51, 52)( 53, 55)( 54, 56)( 59, 60)( 61, 63)( 62, 64)
( 67, 68)( 69, 71)( 70, 72)( 73,145)( 74,146)( 75,148)( 76,147)( 77,151)
( 78,152)( 79,149)( 80,150)( 81,153)( 82,154)( 83,156)( 84,155)( 85,159)
( 86,160)( 87,157)( 88,158)( 89,161)( 90,162)( 91,164)( 92,163)( 93,167)
( 94,168)( 95,165)( 96,166)( 97,169)( 98,170)( 99,172)(100,171)(101,175)
(102,176)(103,173)(104,174)(105,177)(106,178)(107,180)(108,179)(109,183)
(110,184)(111,181)(112,182)(113,185)(114,186)(115,188)(116,187)(117,191)
(118,192)(119,189)(120,190)(121,193)(122,194)(123,196)(124,195)(125,199)
(126,200)(127,197)(128,198)(129,201)(130,202)(131,204)(132,203)(133,207)
(134,208)(135,205)(136,206)(137,209)(138,210)(139,212)(140,211)(141,215)
(142,216)(143,213)(144,214)(217,218)(221,224)(222,223)(225,226)(229,232)
(230,231)(233,234)(237,240)(238,239)(241,242)(245,248)(246,247)(249,250)
(253,256)(254,255)(257,258)(261,264)(262,263)(265,266)(269,272)(270,271)
(273,274)(277,280)(278,279)(281,282)(285,288)(286,287)(289,362)(290,361)
(291,363)(292,364)(293,368)(294,367)(295,366)(296,365)(297,370)(298,369)
(299,371)(300,372)(301,376)(302,375)(303,374)(304,373)(305,378)(306,377)
(307,379)(308,380)(309,384)(310,383)(311,382)(312,381)(313,386)(314,385)
(315,387)(316,388)(317,392)(318,391)(319,390)(320,389)(321,394)(322,393)
(323,395)(324,396)(325,400)(326,399)(327,398)(328,397)(329,402)(330,401)
(331,403)(332,404)(333,408)(334,407)(335,406)(336,405)(337,410)(338,409)
(339,411)(340,412)(341,416)(342,415)(343,414)(344,413)(345,418)(346,417)
(347,419)(348,420)(349,424)(350,423)(351,422)(352,421)(353,426)(354,425)
(355,427)(356,428)(357,432)(358,431)(359,430)(360,429);;
s3 := (  1, 73)(  2, 74)(  3, 79)(  4, 80)(  5, 78)(  6, 77)(  7, 75)(  8, 76)
(  9, 81)( 10, 82)( 11, 87)( 12, 88)( 13, 86)( 14, 85)( 15, 83)( 16, 84)
( 17, 89)( 18, 90)( 19, 95)( 20, 96)( 21, 94)( 22, 93)( 23, 91)( 24, 92)
( 25, 97)( 26, 98)( 27,103)( 28,104)( 29,102)( 30,101)( 31, 99)( 32,100)
( 33,105)( 34,106)( 35,111)( 36,112)( 37,110)( 38,109)( 39,107)( 40,108)
( 41,113)( 42,114)( 43,119)( 44,120)( 45,118)( 46,117)( 47,115)( 48,116)
( 49,121)( 50,122)( 51,127)( 52,128)( 53,126)( 54,125)( 55,123)( 56,124)
( 57,129)( 58,130)( 59,135)( 60,136)( 61,134)( 62,133)( 63,131)( 64,132)
( 65,137)( 66,138)( 67,143)( 68,144)( 69,142)( 70,141)( 71,139)( 72,140)
(147,151)(148,152)(149,150)(155,159)(156,160)(157,158)(163,167)(164,168)
(165,166)(171,175)(172,176)(173,174)(179,183)(180,184)(181,182)(187,191)
(188,192)(189,190)(195,199)(196,200)(197,198)(203,207)(204,208)(205,206)
(211,215)(212,216)(213,214)(217,290)(218,289)(219,296)(220,295)(221,293)
(222,294)(223,292)(224,291)(225,298)(226,297)(227,304)(228,303)(229,301)
(230,302)(231,300)(232,299)(233,306)(234,305)(235,312)(236,311)(237,309)
(238,310)(239,308)(240,307)(241,314)(242,313)(243,320)(244,319)(245,317)
(246,318)(247,316)(248,315)(249,322)(250,321)(251,328)(252,327)(253,325)
(254,326)(255,324)(256,323)(257,330)(258,329)(259,336)(260,335)(261,333)
(262,334)(263,332)(264,331)(265,338)(266,337)(267,344)(268,343)(269,341)
(270,342)(271,340)(272,339)(273,346)(274,345)(275,352)(276,351)(277,349)
(278,350)(279,348)(280,347)(281,354)(282,353)(283,360)(284,359)(285,357)
(286,358)(287,356)(288,355)(361,362)(363,368)(364,367)(369,370)(371,376)
(372,375)(377,378)(379,384)(380,383)(385,386)(387,392)(388,391)(393,394)
(395,400)(396,399)(401,402)(403,408)(404,407)(409,410)(411,416)(412,415)
(417,418)(419,424)(420,423)(425,426)(427,432)(428,431);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3*s2*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s3*s2*s1*s3*s2*s1*s2*s1*s3*s2*s1*s3*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(432)!(  9, 17)( 10, 18)( 11, 19)( 12, 20)( 13, 21)( 14, 22)( 15, 23)
( 16, 24)( 25, 65)( 26, 66)( 27, 67)( 28, 68)( 29, 69)( 30, 70)( 31, 71)
( 32, 72)( 33, 57)( 34, 58)( 35, 59)( 36, 60)( 37, 61)( 38, 62)( 39, 63)
( 40, 64)( 41, 49)( 42, 50)( 43, 51)( 44, 52)( 45, 53)( 46, 54)( 47, 55)
( 48, 56)( 81, 89)( 82, 90)( 83, 91)( 84, 92)( 85, 93)( 86, 94)( 87, 95)
( 88, 96)( 97,137)( 98,138)( 99,139)(100,140)(101,141)(102,142)(103,143)
(104,144)(105,129)(106,130)(107,131)(108,132)(109,133)(110,134)(111,135)
(112,136)(113,121)(114,122)(115,123)(116,124)(117,125)(118,126)(119,127)
(120,128)(153,161)(154,162)(155,163)(156,164)(157,165)(158,166)(159,167)
(160,168)(169,209)(170,210)(171,211)(172,212)(173,213)(174,214)(175,215)
(176,216)(177,201)(178,202)(179,203)(180,204)(181,205)(182,206)(183,207)
(184,208)(185,193)(186,194)(187,195)(188,196)(189,197)(190,198)(191,199)
(192,200)(225,233)(226,234)(227,235)(228,236)(229,237)(230,238)(231,239)
(232,240)(241,281)(242,282)(243,283)(244,284)(245,285)(246,286)(247,287)
(248,288)(249,273)(250,274)(251,275)(252,276)(253,277)(254,278)(255,279)
(256,280)(257,265)(258,266)(259,267)(260,268)(261,269)(262,270)(263,271)
(264,272)(297,305)(298,306)(299,307)(300,308)(301,309)(302,310)(303,311)
(304,312)(313,353)(314,354)(315,355)(316,356)(317,357)(318,358)(319,359)
(320,360)(321,345)(322,346)(323,347)(324,348)(325,349)(326,350)(327,351)
(328,352)(329,337)(330,338)(331,339)(332,340)(333,341)(334,342)(335,343)
(336,344)(369,377)(370,378)(371,379)(372,380)(373,381)(374,382)(375,383)
(376,384)(385,425)(386,426)(387,427)(388,428)(389,429)(390,430)(391,431)
(392,432)(393,417)(394,418)(395,419)(396,420)(397,421)(398,422)(399,423)
(400,424)(401,409)(402,410)(403,411)(404,412)(405,413)(406,414)(407,415)
(408,416);
s1 := Sym(432)!(  1,245)(  2,246)(  3,248)(  4,247)(  5,242)(  6,241)(  7,243)
(  8,244)(  9,261)( 10,262)( 11,264)( 12,263)( 13,258)( 14,257)( 15,259)
( 16,260)( 17,253)( 18,254)( 19,256)( 20,255)( 21,250)( 22,249)( 23,251)
( 24,252)( 25,221)( 26,222)( 27,224)( 28,223)( 29,218)( 30,217)( 31,219)
( 32,220)( 33,237)( 34,238)( 35,240)( 36,239)( 37,234)( 38,233)( 39,235)
( 40,236)( 41,229)( 42,230)( 43,232)( 44,231)( 45,226)( 46,225)( 47,227)
( 48,228)( 49,285)( 50,286)( 51,288)( 52,287)( 53,282)( 54,281)( 55,283)
( 56,284)( 57,277)( 58,278)( 59,280)( 60,279)( 61,274)( 62,273)( 63,275)
( 64,276)( 65,269)( 66,270)( 67,272)( 68,271)( 69,266)( 70,265)( 71,267)
( 72,268)( 73,317)( 74,318)( 75,320)( 76,319)( 77,314)( 78,313)( 79,315)
( 80,316)( 81,333)( 82,334)( 83,336)( 84,335)( 85,330)( 86,329)( 87,331)
( 88,332)( 89,325)( 90,326)( 91,328)( 92,327)( 93,322)( 94,321)( 95,323)
( 96,324)( 97,293)( 98,294)( 99,296)(100,295)(101,290)(102,289)(103,291)
(104,292)(105,309)(106,310)(107,312)(108,311)(109,306)(110,305)(111,307)
(112,308)(113,301)(114,302)(115,304)(116,303)(117,298)(118,297)(119,299)
(120,300)(121,357)(122,358)(123,360)(124,359)(125,354)(126,353)(127,355)
(128,356)(129,349)(130,350)(131,352)(132,351)(133,346)(134,345)(135,347)
(136,348)(137,341)(138,342)(139,344)(140,343)(141,338)(142,337)(143,339)
(144,340)(145,389)(146,390)(147,392)(148,391)(149,386)(150,385)(151,387)
(152,388)(153,405)(154,406)(155,408)(156,407)(157,402)(158,401)(159,403)
(160,404)(161,397)(162,398)(163,400)(164,399)(165,394)(166,393)(167,395)
(168,396)(169,365)(170,366)(171,368)(172,367)(173,362)(174,361)(175,363)
(176,364)(177,381)(178,382)(179,384)(180,383)(181,378)(182,377)(183,379)
(184,380)(185,373)(186,374)(187,376)(188,375)(189,370)(190,369)(191,371)
(192,372)(193,429)(194,430)(195,432)(196,431)(197,426)(198,425)(199,427)
(200,428)(201,421)(202,422)(203,424)(204,423)(205,418)(206,417)(207,419)
(208,420)(209,413)(210,414)(211,416)(212,415)(213,410)(214,409)(215,411)
(216,412);
s2 := Sym(432)!(  3,  4)(  5,  7)(  6,  8)( 11, 12)( 13, 15)( 14, 16)( 19, 20)
( 21, 23)( 22, 24)( 27, 28)( 29, 31)( 30, 32)( 35, 36)( 37, 39)( 38, 40)
( 43, 44)( 45, 47)( 46, 48)( 51, 52)( 53, 55)( 54, 56)( 59, 60)( 61, 63)
( 62, 64)( 67, 68)( 69, 71)( 70, 72)( 73,145)( 74,146)( 75,148)( 76,147)
( 77,151)( 78,152)( 79,149)( 80,150)( 81,153)( 82,154)( 83,156)( 84,155)
( 85,159)( 86,160)( 87,157)( 88,158)( 89,161)( 90,162)( 91,164)( 92,163)
( 93,167)( 94,168)( 95,165)( 96,166)( 97,169)( 98,170)( 99,172)(100,171)
(101,175)(102,176)(103,173)(104,174)(105,177)(106,178)(107,180)(108,179)
(109,183)(110,184)(111,181)(112,182)(113,185)(114,186)(115,188)(116,187)
(117,191)(118,192)(119,189)(120,190)(121,193)(122,194)(123,196)(124,195)
(125,199)(126,200)(127,197)(128,198)(129,201)(130,202)(131,204)(132,203)
(133,207)(134,208)(135,205)(136,206)(137,209)(138,210)(139,212)(140,211)
(141,215)(142,216)(143,213)(144,214)(217,218)(221,224)(222,223)(225,226)
(229,232)(230,231)(233,234)(237,240)(238,239)(241,242)(245,248)(246,247)
(249,250)(253,256)(254,255)(257,258)(261,264)(262,263)(265,266)(269,272)
(270,271)(273,274)(277,280)(278,279)(281,282)(285,288)(286,287)(289,362)
(290,361)(291,363)(292,364)(293,368)(294,367)(295,366)(296,365)(297,370)
(298,369)(299,371)(300,372)(301,376)(302,375)(303,374)(304,373)(305,378)
(306,377)(307,379)(308,380)(309,384)(310,383)(311,382)(312,381)(313,386)
(314,385)(315,387)(316,388)(317,392)(318,391)(319,390)(320,389)(321,394)
(322,393)(323,395)(324,396)(325,400)(326,399)(327,398)(328,397)(329,402)
(330,401)(331,403)(332,404)(333,408)(334,407)(335,406)(336,405)(337,410)
(338,409)(339,411)(340,412)(341,416)(342,415)(343,414)(344,413)(345,418)
(346,417)(347,419)(348,420)(349,424)(350,423)(351,422)(352,421)(353,426)
(354,425)(355,427)(356,428)(357,432)(358,431)(359,430)(360,429);
s3 := Sym(432)!(  1, 73)(  2, 74)(  3, 79)(  4, 80)(  5, 78)(  6, 77)(  7, 75)
(  8, 76)(  9, 81)( 10, 82)( 11, 87)( 12, 88)( 13, 86)( 14, 85)( 15, 83)
( 16, 84)( 17, 89)( 18, 90)( 19, 95)( 20, 96)( 21, 94)( 22, 93)( 23, 91)
( 24, 92)( 25, 97)( 26, 98)( 27,103)( 28,104)( 29,102)( 30,101)( 31, 99)
( 32,100)( 33,105)( 34,106)( 35,111)( 36,112)( 37,110)( 38,109)( 39,107)
( 40,108)( 41,113)( 42,114)( 43,119)( 44,120)( 45,118)( 46,117)( 47,115)
( 48,116)( 49,121)( 50,122)( 51,127)( 52,128)( 53,126)( 54,125)( 55,123)
( 56,124)( 57,129)( 58,130)( 59,135)( 60,136)( 61,134)( 62,133)( 63,131)
( 64,132)( 65,137)( 66,138)( 67,143)( 68,144)( 69,142)( 70,141)( 71,139)
( 72,140)(147,151)(148,152)(149,150)(155,159)(156,160)(157,158)(163,167)
(164,168)(165,166)(171,175)(172,176)(173,174)(179,183)(180,184)(181,182)
(187,191)(188,192)(189,190)(195,199)(196,200)(197,198)(203,207)(204,208)
(205,206)(211,215)(212,216)(213,214)(217,290)(218,289)(219,296)(220,295)
(221,293)(222,294)(223,292)(224,291)(225,298)(226,297)(227,304)(228,303)
(229,301)(230,302)(231,300)(232,299)(233,306)(234,305)(235,312)(236,311)
(237,309)(238,310)(239,308)(240,307)(241,314)(242,313)(243,320)(244,319)
(245,317)(246,318)(247,316)(248,315)(249,322)(250,321)(251,328)(252,327)
(253,325)(254,326)(255,324)(256,323)(257,330)(258,329)(259,336)(260,335)
(261,333)(262,334)(263,332)(264,331)(265,338)(266,337)(267,344)(268,343)
(269,341)(270,342)(271,340)(272,339)(273,346)(274,345)(275,352)(276,351)
(277,349)(278,350)(279,348)(280,347)(281,354)(282,353)(283,360)(284,359)
(285,357)(286,358)(287,356)(288,355)(361,362)(363,368)(364,367)(369,370)
(371,376)(372,375)(377,378)(379,384)(380,383)(385,386)(387,392)(388,391)
(393,394)(395,400)(396,399)(401,402)(403,408)(404,407)(409,410)(411,416)
(412,415)(417,418)(419,424)(420,423)(425,426)(427,432)(428,431);
poly := sub<Sym(432)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s3*s2*s1*s3*s2*s1*s2*s1*s3*s2*s1*s3*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope