Polytope of Type {4,6,9,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,6,9,4}*1728
if this polytope has a name.
Group : SmallGroup(1728,30313)
Rank : 5
Schlafli Type : {4,6,9,4}
Number of vertices, edges, etc : 4, 12, 27, 18, 4
Order of s0s1s2s3s4 : 36
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,6,9,4}*864
   3-fold quotients : {4,2,9,4}*576, {4,6,3,4}*576
   6-fold quotients : {2,2,9,4}*288, {2,6,3,4}*288
   9-fold quotients : {4,2,3,4}*192
   18-fold quotients : {2,2,3,4}*96
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,217)(  2,218)(  3,219)(  4,220)(  5,221)(  6,222)(  7,223)(  8,224)
(  9,225)( 10,226)( 11,227)( 12,228)( 13,229)( 14,230)( 15,231)( 16,232)
( 17,233)( 18,234)( 19,235)( 20,236)( 21,237)( 22,238)( 23,239)( 24,240)
( 25,241)( 26,242)( 27,243)( 28,244)( 29,245)( 30,246)( 31,247)( 32,248)
( 33,249)( 34,250)( 35,251)( 36,252)( 37,253)( 38,254)( 39,255)( 40,256)
( 41,257)( 42,258)( 43,259)( 44,260)( 45,261)( 46,262)( 47,263)( 48,264)
( 49,265)( 50,266)( 51,267)( 52,268)( 53,269)( 54,270)( 55,271)( 56,272)
( 57,273)( 58,274)( 59,275)( 60,276)( 61,277)( 62,278)( 63,279)( 64,280)
( 65,281)( 66,282)( 67,283)( 68,284)( 69,285)( 70,286)( 71,287)( 72,288)
( 73,289)( 74,290)( 75,291)( 76,292)( 77,293)( 78,294)( 79,295)( 80,296)
( 81,297)( 82,298)( 83,299)( 84,300)( 85,301)( 86,302)( 87,303)( 88,304)
( 89,305)( 90,306)( 91,307)( 92,308)( 93,309)( 94,310)( 95,311)( 96,312)
( 97,313)( 98,314)( 99,315)(100,316)(101,317)(102,318)(103,319)(104,320)
(105,321)(106,322)(107,323)(108,324)(109,325)(110,326)(111,327)(112,328)
(113,329)(114,330)(115,331)(116,332)(117,333)(118,334)(119,335)(120,336)
(121,337)(122,338)(123,339)(124,340)(125,341)(126,342)(127,343)(128,344)
(129,345)(130,346)(131,347)(132,348)(133,349)(134,350)(135,351)(136,352)
(137,353)(138,354)(139,355)(140,356)(141,357)(142,358)(143,359)(144,360)
(145,361)(146,362)(147,363)(148,364)(149,365)(150,366)(151,367)(152,368)
(153,369)(154,370)(155,371)(156,372)(157,373)(158,374)(159,375)(160,376)
(161,377)(162,378)(163,379)(164,380)(165,381)(166,382)(167,383)(168,384)
(169,385)(170,386)(171,387)(172,388)(173,389)(174,390)(175,391)(176,392)
(177,393)(178,394)(179,395)(180,396)(181,397)(182,398)(183,399)(184,400)
(185,401)(186,402)(187,403)(188,404)(189,405)(190,406)(191,407)(192,408)
(193,409)(194,410)(195,411)(196,412)(197,413)(198,414)(199,415)(200,416)
(201,417)(202,418)(203,419)(204,420)(205,421)(206,422)(207,423)(208,424)
(209,425)(210,426)(211,427)(212,428)(213,429)(214,430)(215,431)(216,432);;
s1 := ( 13, 25)( 14, 26)( 15, 27)( 16, 28)( 17, 29)( 18, 30)( 19, 31)( 20, 32)
( 21, 33)( 22, 34)( 23, 35)( 24, 36)( 49, 61)( 50, 62)( 51, 63)( 52, 64)
( 53, 65)( 54, 66)( 55, 67)( 56, 68)( 57, 69)( 58, 70)( 59, 71)( 60, 72)
( 85, 97)( 86, 98)( 87, 99)( 88,100)( 89,101)( 90,102)( 91,103)( 92,104)
( 93,105)( 94,106)( 95,107)( 96,108)(121,133)(122,134)(123,135)(124,136)
(125,137)(126,138)(127,139)(128,140)(129,141)(130,142)(131,143)(132,144)
(157,169)(158,170)(159,171)(160,172)(161,173)(162,174)(163,175)(164,176)
(165,177)(166,178)(167,179)(168,180)(193,205)(194,206)(195,207)(196,208)
(197,209)(198,210)(199,211)(200,212)(201,213)(202,214)(203,215)(204,216)
(217,325)(218,326)(219,327)(220,328)(221,329)(222,330)(223,331)(224,332)
(225,333)(226,334)(227,335)(228,336)(229,349)(230,350)(231,351)(232,352)
(233,353)(234,354)(235,355)(236,356)(237,357)(238,358)(239,359)(240,360)
(241,337)(242,338)(243,339)(244,340)(245,341)(246,342)(247,343)(248,344)
(249,345)(250,346)(251,347)(252,348)(253,361)(254,362)(255,363)(256,364)
(257,365)(258,366)(259,367)(260,368)(261,369)(262,370)(263,371)(264,372)
(265,385)(266,386)(267,387)(268,388)(269,389)(270,390)(271,391)(272,392)
(273,393)(274,394)(275,395)(276,396)(277,373)(278,374)(279,375)(280,376)
(281,377)(282,378)(283,379)(284,380)(285,381)(286,382)(287,383)(288,384)
(289,397)(290,398)(291,399)(292,400)(293,401)(294,402)(295,403)(296,404)
(297,405)(298,406)(299,407)(300,408)(301,421)(302,422)(303,423)(304,424)
(305,425)(306,426)(307,427)(308,428)(309,429)(310,430)(311,431)(312,432)
(313,409)(314,410)(315,411)(316,412)(317,413)(318,414)(319,415)(320,416)
(321,417)(322,418)(323,419)(324,420);;
s2 := (  1, 13)(  2, 14)(  3, 16)(  4, 15)(  5, 21)(  6, 22)(  7, 24)(  8, 23)
(  9, 17)( 10, 18)( 11, 20)( 12, 19)( 27, 28)( 29, 33)( 30, 34)( 31, 36)
( 32, 35)( 37, 93)( 38, 94)( 39, 96)( 40, 95)( 41, 89)( 42, 90)( 43, 92)
( 44, 91)( 45, 85)( 46, 86)( 47, 88)( 48, 87)( 49, 81)( 50, 82)( 51, 84)
( 52, 83)( 53, 77)( 54, 78)( 55, 80)( 56, 79)( 57, 73)( 58, 74)( 59, 76)
( 60, 75)( 61,105)( 62,106)( 63,108)( 64,107)( 65,101)( 66,102)( 67,104)
( 68,103)( 69, 97)( 70, 98)( 71,100)( 72, 99)(109,121)(110,122)(111,124)
(112,123)(113,129)(114,130)(115,132)(116,131)(117,125)(118,126)(119,128)
(120,127)(135,136)(137,141)(138,142)(139,144)(140,143)(145,201)(146,202)
(147,204)(148,203)(149,197)(150,198)(151,200)(152,199)(153,193)(154,194)
(155,196)(156,195)(157,189)(158,190)(159,192)(160,191)(161,185)(162,186)
(163,188)(164,187)(165,181)(166,182)(167,184)(168,183)(169,213)(170,214)
(171,216)(172,215)(173,209)(174,210)(175,212)(176,211)(177,205)(178,206)
(179,208)(180,207)(217,229)(218,230)(219,232)(220,231)(221,237)(222,238)
(223,240)(224,239)(225,233)(226,234)(227,236)(228,235)(243,244)(245,249)
(246,250)(247,252)(248,251)(253,309)(254,310)(255,312)(256,311)(257,305)
(258,306)(259,308)(260,307)(261,301)(262,302)(263,304)(264,303)(265,297)
(266,298)(267,300)(268,299)(269,293)(270,294)(271,296)(272,295)(273,289)
(274,290)(275,292)(276,291)(277,321)(278,322)(279,324)(280,323)(281,317)
(282,318)(283,320)(284,319)(285,313)(286,314)(287,316)(288,315)(325,337)
(326,338)(327,340)(328,339)(329,345)(330,346)(331,348)(332,347)(333,341)
(334,342)(335,344)(336,343)(351,352)(353,357)(354,358)(355,360)(356,359)
(361,417)(362,418)(363,420)(364,419)(365,413)(366,414)(367,416)(368,415)
(369,409)(370,410)(371,412)(372,411)(373,405)(374,406)(375,408)(376,407)
(377,401)(378,402)(379,404)(380,403)(381,397)(382,398)(383,400)(384,399)
(385,429)(386,430)(387,432)(388,431)(389,425)(390,426)(391,428)(392,427)
(393,421)(394,422)(395,424)(396,423);;
s3 := (  1, 37)(  2, 40)(  3, 39)(  4, 38)(  5, 45)(  6, 48)(  7, 47)(  8, 46)
(  9, 41)( 10, 44)( 11, 43)( 12, 42)( 13, 61)( 14, 64)( 15, 63)( 16, 62)
( 17, 69)( 18, 72)( 19, 71)( 20, 70)( 21, 65)( 22, 68)( 23, 67)( 24, 66)
( 25, 49)( 26, 52)( 27, 51)( 28, 50)( 29, 57)( 30, 60)( 31, 59)( 32, 58)
( 33, 53)( 34, 56)( 35, 55)( 36, 54)( 73, 81)( 74, 84)( 75, 83)( 76, 82)
( 78, 80)( 85,105)( 86,108)( 87,107)( 88,106)( 89,101)( 90,104)( 91,103)
( 92,102)( 93, 97)( 94,100)( 95, 99)( 96, 98)(109,145)(110,148)(111,147)
(112,146)(113,153)(114,156)(115,155)(116,154)(117,149)(118,152)(119,151)
(120,150)(121,169)(122,172)(123,171)(124,170)(125,177)(126,180)(127,179)
(128,178)(129,173)(130,176)(131,175)(132,174)(133,157)(134,160)(135,159)
(136,158)(137,165)(138,168)(139,167)(140,166)(141,161)(142,164)(143,163)
(144,162)(181,189)(182,192)(183,191)(184,190)(186,188)(193,213)(194,216)
(195,215)(196,214)(197,209)(198,212)(199,211)(200,210)(201,205)(202,208)
(203,207)(204,206)(217,253)(218,256)(219,255)(220,254)(221,261)(222,264)
(223,263)(224,262)(225,257)(226,260)(227,259)(228,258)(229,277)(230,280)
(231,279)(232,278)(233,285)(234,288)(235,287)(236,286)(237,281)(238,284)
(239,283)(240,282)(241,265)(242,268)(243,267)(244,266)(245,273)(246,276)
(247,275)(248,274)(249,269)(250,272)(251,271)(252,270)(289,297)(290,300)
(291,299)(292,298)(294,296)(301,321)(302,324)(303,323)(304,322)(305,317)
(306,320)(307,319)(308,318)(309,313)(310,316)(311,315)(312,314)(325,361)
(326,364)(327,363)(328,362)(329,369)(330,372)(331,371)(332,370)(333,365)
(334,368)(335,367)(336,366)(337,385)(338,388)(339,387)(340,386)(341,393)
(342,396)(343,395)(344,394)(345,389)(346,392)(347,391)(348,390)(349,373)
(350,376)(351,375)(352,374)(353,381)(354,384)(355,383)(356,382)(357,377)
(358,380)(359,379)(360,378)(397,405)(398,408)(399,407)(400,406)(402,404)
(409,429)(410,432)(411,431)(412,430)(413,425)(414,428)(415,427)(416,426)
(417,421)(418,424)(419,423)(420,422);;
s4 := (  1,  2)(  3,  4)(  5,  6)(  7,  8)(  9, 10)( 11, 12)( 13, 14)( 15, 16)
( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)( 31, 32)
( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)( 47, 48)
( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)( 63, 64)
( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73, 74)( 75, 76)( 77, 78)( 79, 80)
( 81, 82)( 83, 84)( 85, 86)( 87, 88)( 89, 90)( 91, 92)( 93, 94)( 95, 96)
( 97, 98)( 99,100)(101,102)(103,104)(105,106)(107,108)(109,110)(111,112)
(113,114)(115,116)(117,118)(119,120)(121,122)(123,124)(125,126)(127,128)
(129,130)(131,132)(133,134)(135,136)(137,138)(139,140)(141,142)(143,144)
(145,146)(147,148)(149,150)(151,152)(153,154)(155,156)(157,158)(159,160)
(161,162)(163,164)(165,166)(167,168)(169,170)(171,172)(173,174)(175,176)
(177,178)(179,180)(181,182)(183,184)(185,186)(187,188)(189,190)(191,192)
(193,194)(195,196)(197,198)(199,200)(201,202)(203,204)(205,206)(207,208)
(209,210)(211,212)(213,214)(215,216)(217,218)(219,220)(221,222)(223,224)
(225,226)(227,228)(229,230)(231,232)(233,234)(235,236)(237,238)(239,240)
(241,242)(243,244)(245,246)(247,248)(249,250)(251,252)(253,254)(255,256)
(257,258)(259,260)(261,262)(263,264)(265,266)(267,268)(269,270)(271,272)
(273,274)(275,276)(277,278)(279,280)(281,282)(283,284)(285,286)(287,288)
(289,290)(291,292)(293,294)(295,296)(297,298)(299,300)(301,302)(303,304)
(305,306)(307,308)(309,310)(311,312)(313,314)(315,316)(317,318)(319,320)
(321,322)(323,324)(325,326)(327,328)(329,330)(331,332)(333,334)(335,336)
(337,338)(339,340)(341,342)(343,344)(345,346)(347,348)(349,350)(351,352)
(353,354)(355,356)(357,358)(359,360)(361,362)(363,364)(365,366)(367,368)
(369,370)(371,372)(373,374)(375,376)(377,378)(379,380)(381,382)(383,384)
(385,386)(387,388)(389,390)(391,392)(393,394)(395,396)(397,398)(399,400)
(401,402)(403,404)(405,406)(407,408)(409,410)(411,412)(413,414)(415,416)
(417,418)(419,420)(421,422)(423,424)(425,426)(427,428)(429,430)(431,432);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1, s3*s4*s3*s4*s3*s4*s3*s4, 
s4*s3*s2*s4*s3*s4*s3*s2*s3, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(432)!(  1,217)(  2,218)(  3,219)(  4,220)(  5,221)(  6,222)(  7,223)
(  8,224)(  9,225)( 10,226)( 11,227)( 12,228)( 13,229)( 14,230)( 15,231)
( 16,232)( 17,233)( 18,234)( 19,235)( 20,236)( 21,237)( 22,238)( 23,239)
( 24,240)( 25,241)( 26,242)( 27,243)( 28,244)( 29,245)( 30,246)( 31,247)
( 32,248)( 33,249)( 34,250)( 35,251)( 36,252)( 37,253)( 38,254)( 39,255)
( 40,256)( 41,257)( 42,258)( 43,259)( 44,260)( 45,261)( 46,262)( 47,263)
( 48,264)( 49,265)( 50,266)( 51,267)( 52,268)( 53,269)( 54,270)( 55,271)
( 56,272)( 57,273)( 58,274)( 59,275)( 60,276)( 61,277)( 62,278)( 63,279)
( 64,280)( 65,281)( 66,282)( 67,283)( 68,284)( 69,285)( 70,286)( 71,287)
( 72,288)( 73,289)( 74,290)( 75,291)( 76,292)( 77,293)( 78,294)( 79,295)
( 80,296)( 81,297)( 82,298)( 83,299)( 84,300)( 85,301)( 86,302)( 87,303)
( 88,304)( 89,305)( 90,306)( 91,307)( 92,308)( 93,309)( 94,310)( 95,311)
( 96,312)( 97,313)( 98,314)( 99,315)(100,316)(101,317)(102,318)(103,319)
(104,320)(105,321)(106,322)(107,323)(108,324)(109,325)(110,326)(111,327)
(112,328)(113,329)(114,330)(115,331)(116,332)(117,333)(118,334)(119,335)
(120,336)(121,337)(122,338)(123,339)(124,340)(125,341)(126,342)(127,343)
(128,344)(129,345)(130,346)(131,347)(132,348)(133,349)(134,350)(135,351)
(136,352)(137,353)(138,354)(139,355)(140,356)(141,357)(142,358)(143,359)
(144,360)(145,361)(146,362)(147,363)(148,364)(149,365)(150,366)(151,367)
(152,368)(153,369)(154,370)(155,371)(156,372)(157,373)(158,374)(159,375)
(160,376)(161,377)(162,378)(163,379)(164,380)(165,381)(166,382)(167,383)
(168,384)(169,385)(170,386)(171,387)(172,388)(173,389)(174,390)(175,391)
(176,392)(177,393)(178,394)(179,395)(180,396)(181,397)(182,398)(183,399)
(184,400)(185,401)(186,402)(187,403)(188,404)(189,405)(190,406)(191,407)
(192,408)(193,409)(194,410)(195,411)(196,412)(197,413)(198,414)(199,415)
(200,416)(201,417)(202,418)(203,419)(204,420)(205,421)(206,422)(207,423)
(208,424)(209,425)(210,426)(211,427)(212,428)(213,429)(214,430)(215,431)
(216,432);
s1 := Sym(432)!( 13, 25)( 14, 26)( 15, 27)( 16, 28)( 17, 29)( 18, 30)( 19, 31)
( 20, 32)( 21, 33)( 22, 34)( 23, 35)( 24, 36)( 49, 61)( 50, 62)( 51, 63)
( 52, 64)( 53, 65)( 54, 66)( 55, 67)( 56, 68)( 57, 69)( 58, 70)( 59, 71)
( 60, 72)( 85, 97)( 86, 98)( 87, 99)( 88,100)( 89,101)( 90,102)( 91,103)
( 92,104)( 93,105)( 94,106)( 95,107)( 96,108)(121,133)(122,134)(123,135)
(124,136)(125,137)(126,138)(127,139)(128,140)(129,141)(130,142)(131,143)
(132,144)(157,169)(158,170)(159,171)(160,172)(161,173)(162,174)(163,175)
(164,176)(165,177)(166,178)(167,179)(168,180)(193,205)(194,206)(195,207)
(196,208)(197,209)(198,210)(199,211)(200,212)(201,213)(202,214)(203,215)
(204,216)(217,325)(218,326)(219,327)(220,328)(221,329)(222,330)(223,331)
(224,332)(225,333)(226,334)(227,335)(228,336)(229,349)(230,350)(231,351)
(232,352)(233,353)(234,354)(235,355)(236,356)(237,357)(238,358)(239,359)
(240,360)(241,337)(242,338)(243,339)(244,340)(245,341)(246,342)(247,343)
(248,344)(249,345)(250,346)(251,347)(252,348)(253,361)(254,362)(255,363)
(256,364)(257,365)(258,366)(259,367)(260,368)(261,369)(262,370)(263,371)
(264,372)(265,385)(266,386)(267,387)(268,388)(269,389)(270,390)(271,391)
(272,392)(273,393)(274,394)(275,395)(276,396)(277,373)(278,374)(279,375)
(280,376)(281,377)(282,378)(283,379)(284,380)(285,381)(286,382)(287,383)
(288,384)(289,397)(290,398)(291,399)(292,400)(293,401)(294,402)(295,403)
(296,404)(297,405)(298,406)(299,407)(300,408)(301,421)(302,422)(303,423)
(304,424)(305,425)(306,426)(307,427)(308,428)(309,429)(310,430)(311,431)
(312,432)(313,409)(314,410)(315,411)(316,412)(317,413)(318,414)(319,415)
(320,416)(321,417)(322,418)(323,419)(324,420);
s2 := Sym(432)!(  1, 13)(  2, 14)(  3, 16)(  4, 15)(  5, 21)(  6, 22)(  7, 24)
(  8, 23)(  9, 17)( 10, 18)( 11, 20)( 12, 19)( 27, 28)( 29, 33)( 30, 34)
( 31, 36)( 32, 35)( 37, 93)( 38, 94)( 39, 96)( 40, 95)( 41, 89)( 42, 90)
( 43, 92)( 44, 91)( 45, 85)( 46, 86)( 47, 88)( 48, 87)( 49, 81)( 50, 82)
( 51, 84)( 52, 83)( 53, 77)( 54, 78)( 55, 80)( 56, 79)( 57, 73)( 58, 74)
( 59, 76)( 60, 75)( 61,105)( 62,106)( 63,108)( 64,107)( 65,101)( 66,102)
( 67,104)( 68,103)( 69, 97)( 70, 98)( 71,100)( 72, 99)(109,121)(110,122)
(111,124)(112,123)(113,129)(114,130)(115,132)(116,131)(117,125)(118,126)
(119,128)(120,127)(135,136)(137,141)(138,142)(139,144)(140,143)(145,201)
(146,202)(147,204)(148,203)(149,197)(150,198)(151,200)(152,199)(153,193)
(154,194)(155,196)(156,195)(157,189)(158,190)(159,192)(160,191)(161,185)
(162,186)(163,188)(164,187)(165,181)(166,182)(167,184)(168,183)(169,213)
(170,214)(171,216)(172,215)(173,209)(174,210)(175,212)(176,211)(177,205)
(178,206)(179,208)(180,207)(217,229)(218,230)(219,232)(220,231)(221,237)
(222,238)(223,240)(224,239)(225,233)(226,234)(227,236)(228,235)(243,244)
(245,249)(246,250)(247,252)(248,251)(253,309)(254,310)(255,312)(256,311)
(257,305)(258,306)(259,308)(260,307)(261,301)(262,302)(263,304)(264,303)
(265,297)(266,298)(267,300)(268,299)(269,293)(270,294)(271,296)(272,295)
(273,289)(274,290)(275,292)(276,291)(277,321)(278,322)(279,324)(280,323)
(281,317)(282,318)(283,320)(284,319)(285,313)(286,314)(287,316)(288,315)
(325,337)(326,338)(327,340)(328,339)(329,345)(330,346)(331,348)(332,347)
(333,341)(334,342)(335,344)(336,343)(351,352)(353,357)(354,358)(355,360)
(356,359)(361,417)(362,418)(363,420)(364,419)(365,413)(366,414)(367,416)
(368,415)(369,409)(370,410)(371,412)(372,411)(373,405)(374,406)(375,408)
(376,407)(377,401)(378,402)(379,404)(380,403)(381,397)(382,398)(383,400)
(384,399)(385,429)(386,430)(387,432)(388,431)(389,425)(390,426)(391,428)
(392,427)(393,421)(394,422)(395,424)(396,423);
s3 := Sym(432)!(  1, 37)(  2, 40)(  3, 39)(  4, 38)(  5, 45)(  6, 48)(  7, 47)
(  8, 46)(  9, 41)( 10, 44)( 11, 43)( 12, 42)( 13, 61)( 14, 64)( 15, 63)
( 16, 62)( 17, 69)( 18, 72)( 19, 71)( 20, 70)( 21, 65)( 22, 68)( 23, 67)
( 24, 66)( 25, 49)( 26, 52)( 27, 51)( 28, 50)( 29, 57)( 30, 60)( 31, 59)
( 32, 58)( 33, 53)( 34, 56)( 35, 55)( 36, 54)( 73, 81)( 74, 84)( 75, 83)
( 76, 82)( 78, 80)( 85,105)( 86,108)( 87,107)( 88,106)( 89,101)( 90,104)
( 91,103)( 92,102)( 93, 97)( 94,100)( 95, 99)( 96, 98)(109,145)(110,148)
(111,147)(112,146)(113,153)(114,156)(115,155)(116,154)(117,149)(118,152)
(119,151)(120,150)(121,169)(122,172)(123,171)(124,170)(125,177)(126,180)
(127,179)(128,178)(129,173)(130,176)(131,175)(132,174)(133,157)(134,160)
(135,159)(136,158)(137,165)(138,168)(139,167)(140,166)(141,161)(142,164)
(143,163)(144,162)(181,189)(182,192)(183,191)(184,190)(186,188)(193,213)
(194,216)(195,215)(196,214)(197,209)(198,212)(199,211)(200,210)(201,205)
(202,208)(203,207)(204,206)(217,253)(218,256)(219,255)(220,254)(221,261)
(222,264)(223,263)(224,262)(225,257)(226,260)(227,259)(228,258)(229,277)
(230,280)(231,279)(232,278)(233,285)(234,288)(235,287)(236,286)(237,281)
(238,284)(239,283)(240,282)(241,265)(242,268)(243,267)(244,266)(245,273)
(246,276)(247,275)(248,274)(249,269)(250,272)(251,271)(252,270)(289,297)
(290,300)(291,299)(292,298)(294,296)(301,321)(302,324)(303,323)(304,322)
(305,317)(306,320)(307,319)(308,318)(309,313)(310,316)(311,315)(312,314)
(325,361)(326,364)(327,363)(328,362)(329,369)(330,372)(331,371)(332,370)
(333,365)(334,368)(335,367)(336,366)(337,385)(338,388)(339,387)(340,386)
(341,393)(342,396)(343,395)(344,394)(345,389)(346,392)(347,391)(348,390)
(349,373)(350,376)(351,375)(352,374)(353,381)(354,384)(355,383)(356,382)
(357,377)(358,380)(359,379)(360,378)(397,405)(398,408)(399,407)(400,406)
(402,404)(409,429)(410,432)(411,431)(412,430)(413,425)(414,428)(415,427)
(416,426)(417,421)(418,424)(419,423)(420,422);
s4 := Sym(432)!(  1,  2)(  3,  4)(  5,  6)(  7,  8)(  9, 10)( 11, 12)( 13, 14)
( 15, 16)( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)
( 31, 32)( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)
( 47, 48)( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)
( 63, 64)( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73, 74)( 75, 76)( 77, 78)
( 79, 80)( 81, 82)( 83, 84)( 85, 86)( 87, 88)( 89, 90)( 91, 92)( 93, 94)
( 95, 96)( 97, 98)( 99,100)(101,102)(103,104)(105,106)(107,108)(109,110)
(111,112)(113,114)(115,116)(117,118)(119,120)(121,122)(123,124)(125,126)
(127,128)(129,130)(131,132)(133,134)(135,136)(137,138)(139,140)(141,142)
(143,144)(145,146)(147,148)(149,150)(151,152)(153,154)(155,156)(157,158)
(159,160)(161,162)(163,164)(165,166)(167,168)(169,170)(171,172)(173,174)
(175,176)(177,178)(179,180)(181,182)(183,184)(185,186)(187,188)(189,190)
(191,192)(193,194)(195,196)(197,198)(199,200)(201,202)(203,204)(205,206)
(207,208)(209,210)(211,212)(213,214)(215,216)(217,218)(219,220)(221,222)
(223,224)(225,226)(227,228)(229,230)(231,232)(233,234)(235,236)(237,238)
(239,240)(241,242)(243,244)(245,246)(247,248)(249,250)(251,252)(253,254)
(255,256)(257,258)(259,260)(261,262)(263,264)(265,266)(267,268)(269,270)
(271,272)(273,274)(275,276)(277,278)(279,280)(281,282)(283,284)(285,286)
(287,288)(289,290)(291,292)(293,294)(295,296)(297,298)(299,300)(301,302)
(303,304)(305,306)(307,308)(309,310)(311,312)(313,314)(315,316)(317,318)
(319,320)(321,322)(323,324)(325,326)(327,328)(329,330)(331,332)(333,334)
(335,336)(337,338)(339,340)(341,342)(343,344)(345,346)(347,348)(349,350)
(351,352)(353,354)(355,356)(357,358)(359,360)(361,362)(363,364)(365,366)
(367,368)(369,370)(371,372)(373,374)(375,376)(377,378)(379,380)(381,382)
(383,384)(385,386)(387,388)(389,390)(391,392)(393,394)(395,396)(397,398)
(399,400)(401,402)(403,404)(405,406)(407,408)(409,410)(411,412)(413,414)
(415,416)(417,418)(419,420)(421,422)(423,424)(425,426)(427,428)(429,430)
(431,432);
poly := sub<Sym(432)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1, s3*s4*s3*s4*s3*s4*s3*s4, 
s4*s3*s2*s4*s3*s4*s3*s2*s3, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 
References : None.
to this polytope