include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,4,12}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,4,12}*1728a
if this polytope has a name.
Group : SmallGroup(1728,30394)
Rank : 4
Schlafli Type : {4,4,12}
Number of vertices, edges, etc : 4, 36, 108, 54
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,4,12}*864a
3-fold quotients : {4,4,4}*576b
4-fold quotients : {2,4,12}*432
6-fold quotients : {2,4,4}*288
12-fold quotients : {2,4,4}*144
54-fold quotients : {4,2,2}*32
108-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 55, 82)( 56, 83)( 57, 84)( 58, 85)( 59, 86)( 60, 87)( 61, 88)( 62, 89)
( 63, 90)( 64, 91)( 65, 92)( 66, 93)( 67, 94)( 68, 95)( 69, 96)( 70, 97)
( 71, 98)( 72, 99)( 73,100)( 74,101)( 75,102)( 76,103)( 77,104)( 78,105)
( 79,106)( 80,107)( 81,108);;
s1 := ( 1, 55)( 2, 57)( 3, 56)( 4, 76)( 5, 78)( 6, 77)( 7, 72)( 8, 71)
( 9, 70)( 10, 73)( 11, 75)( 12, 74)( 13, 67)( 14, 69)( 15, 68)( 16, 63)
( 17, 62)( 18, 61)( 19, 64)( 20, 66)( 21, 65)( 22, 58)( 23, 60)( 24, 59)
( 25, 81)( 26, 80)( 27, 79)( 28, 82)( 29, 84)( 30, 83)( 31,103)( 32,105)
( 33,104)( 34, 99)( 35, 98)( 36, 97)( 37,100)( 38,102)( 39,101)( 40, 94)
( 41, 96)( 42, 95)( 43, 90)( 44, 89)( 45, 88)( 46, 91)( 47, 93)( 48, 92)
( 49, 85)( 50, 87)( 51, 86)( 52,108)( 53,107)( 54,106);;
s2 := ( 2, 3)( 4, 5)( 7, 9)( 10, 25)( 11, 27)( 12, 26)( 13, 20)( 14, 19)
( 15, 21)( 16, 24)( 17, 23)( 18, 22)( 29, 30)( 31, 32)( 34, 36)( 37, 52)
( 38, 54)( 39, 53)( 40, 47)( 41, 46)( 42, 48)( 43, 51)( 44, 50)( 45, 49)
( 56, 57)( 58, 59)( 61, 63)( 64, 79)( 65, 81)( 66, 80)( 67, 74)( 68, 73)
( 69, 75)( 70, 78)( 71, 77)( 72, 76)( 83, 84)( 85, 86)( 88, 90)( 91,106)
( 92,108)( 93,107)( 94,101)( 95,100)( 96,102)( 97,105)( 98,104)( 99,103);;
s3 := ( 1, 13)( 2, 15)( 3, 14)( 4, 21)( 5, 20)( 6, 19)( 8, 9)( 10, 23)
( 11, 22)( 12, 24)( 16, 17)( 25, 27)( 28, 40)( 29, 42)( 30, 41)( 31, 48)
( 32, 47)( 33, 46)( 35, 36)( 37, 50)( 38, 49)( 39, 51)( 43, 44)( 52, 54)
( 55, 67)( 56, 69)( 57, 68)( 58, 75)( 59, 74)( 60, 73)( 62, 63)( 64, 77)
( 65, 76)( 66, 78)( 70, 71)( 79, 81)( 82, 94)( 83, 96)( 84, 95)( 85,102)
( 86,101)( 87,100)( 89, 90)( 91,104)( 92,103)( 93,105)( 97, 98)(106,108);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2,
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s3*s1*s2*s3*s2*s3*s2*s3*s2*s3*s1*s2*s3*s2*s3*s2*s3*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(108)!( 55, 82)( 56, 83)( 57, 84)( 58, 85)( 59, 86)( 60, 87)( 61, 88)
( 62, 89)( 63, 90)( 64, 91)( 65, 92)( 66, 93)( 67, 94)( 68, 95)( 69, 96)
( 70, 97)( 71, 98)( 72, 99)( 73,100)( 74,101)( 75,102)( 76,103)( 77,104)
( 78,105)( 79,106)( 80,107)( 81,108);
s1 := Sym(108)!( 1, 55)( 2, 57)( 3, 56)( 4, 76)( 5, 78)( 6, 77)( 7, 72)
( 8, 71)( 9, 70)( 10, 73)( 11, 75)( 12, 74)( 13, 67)( 14, 69)( 15, 68)
( 16, 63)( 17, 62)( 18, 61)( 19, 64)( 20, 66)( 21, 65)( 22, 58)( 23, 60)
( 24, 59)( 25, 81)( 26, 80)( 27, 79)( 28, 82)( 29, 84)( 30, 83)( 31,103)
( 32,105)( 33,104)( 34, 99)( 35, 98)( 36, 97)( 37,100)( 38,102)( 39,101)
( 40, 94)( 41, 96)( 42, 95)( 43, 90)( 44, 89)( 45, 88)( 46, 91)( 47, 93)
( 48, 92)( 49, 85)( 50, 87)( 51, 86)( 52,108)( 53,107)( 54,106);
s2 := Sym(108)!( 2, 3)( 4, 5)( 7, 9)( 10, 25)( 11, 27)( 12, 26)( 13, 20)
( 14, 19)( 15, 21)( 16, 24)( 17, 23)( 18, 22)( 29, 30)( 31, 32)( 34, 36)
( 37, 52)( 38, 54)( 39, 53)( 40, 47)( 41, 46)( 42, 48)( 43, 51)( 44, 50)
( 45, 49)( 56, 57)( 58, 59)( 61, 63)( 64, 79)( 65, 81)( 66, 80)( 67, 74)
( 68, 73)( 69, 75)( 70, 78)( 71, 77)( 72, 76)( 83, 84)( 85, 86)( 88, 90)
( 91,106)( 92,108)( 93,107)( 94,101)( 95,100)( 96,102)( 97,105)( 98,104)
( 99,103);
s3 := Sym(108)!( 1, 13)( 2, 15)( 3, 14)( 4, 21)( 5, 20)( 6, 19)( 8, 9)
( 10, 23)( 11, 22)( 12, 24)( 16, 17)( 25, 27)( 28, 40)( 29, 42)( 30, 41)
( 31, 48)( 32, 47)( 33, 46)( 35, 36)( 37, 50)( 38, 49)( 39, 51)( 43, 44)
( 52, 54)( 55, 67)( 56, 69)( 57, 68)( 58, 75)( 59, 74)( 60, 73)( 62, 63)
( 64, 77)( 65, 76)( 66, 78)( 70, 71)( 79, 81)( 82, 94)( 83, 96)( 84, 95)
( 85,102)( 86,101)( 87,100)( 89, 90)( 91,104)( 92,103)( 93,105)( 97, 98)
(106,108);
poly := sub<Sym(108)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s3*s1*s2*s3*s2*s3*s2*s3*s2*s3*s1*s2*s3*s2*s3*s2*s3*s2 >;
References : None.
to this polytope