Polytope of Type {3,6,48}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,6,48}*1728a
if this polytope has a name.
Group : SmallGroup(1728,3073)
Rank : 4
Schlafli Type : {3,6,48}
Number of vertices, edges, etc : 3, 9, 144, 48
Order of s0s1s2s3 : 48
Order of s0s1s2s3s2s1 : 6
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,6,24}*864a
   3-fold quotients : {3,2,48}*576
   4-fold quotients : {3,6,12}*432a
   6-fold quotients : {3,2,24}*288
   8-fold quotients : {3,6,6}*216a
   9-fold quotients : {3,2,16}*192
   12-fold quotients : {3,2,12}*144
   16-fold quotients : {3,6,3}*108
   18-fold quotients : {3,2,8}*96
   24-fold quotients : {3,2,6}*72
   36-fold quotients : {3,2,4}*48
   48-fold quotients : {3,2,3}*36
   72-fold quotients : {3,2,2}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  3)(  5,  6)(  8,  9)( 10, 19)( 11, 21)( 12, 20)( 13, 22)( 14, 24)
( 15, 23)( 16, 25)( 17, 27)( 18, 26)( 29, 30)( 32, 33)( 35, 36)( 37, 46)
( 38, 48)( 39, 47)( 40, 49)( 41, 51)( 42, 50)( 43, 52)( 44, 54)( 45, 53)
( 56, 57)( 59, 60)( 62, 63)( 64, 73)( 65, 75)( 66, 74)( 67, 76)( 68, 78)
( 69, 77)( 70, 79)( 71, 81)( 72, 80)( 83, 84)( 86, 87)( 89, 90)( 91,100)
( 92,102)( 93,101)( 94,103)( 95,105)( 96,104)( 97,106)( 98,108)( 99,107)
(110,111)(113,114)(116,117)(118,127)(119,129)(120,128)(121,130)(122,132)
(123,131)(124,133)(125,135)(126,134)(137,138)(140,141)(143,144)(145,154)
(146,156)(147,155)(148,157)(149,159)(150,158)(151,160)(152,162)(153,161)
(164,165)(167,168)(170,171)(172,181)(173,183)(174,182)(175,184)(176,186)
(177,185)(178,187)(179,189)(180,188)(191,192)(194,195)(197,198)(199,208)
(200,210)(201,209)(202,211)(203,213)(204,212)(205,214)(206,216)(207,215)
(218,219)(221,222)(224,225)(226,235)(227,237)(228,236)(229,238)(230,240)
(231,239)(232,241)(233,243)(234,242)(245,246)(248,249)(251,252)(253,262)
(254,264)(255,263)(256,265)(257,267)(258,266)(259,268)(260,270)(261,269)
(272,273)(275,276)(278,279)(280,289)(281,291)(282,290)(283,292)(284,294)
(285,293)(286,295)(287,297)(288,296)(299,300)(302,303)(305,306)(307,316)
(308,318)(309,317)(310,319)(311,321)(312,320)(313,322)(314,324)(315,323)
(326,327)(329,330)(332,333)(334,343)(335,345)(336,344)(337,346)(338,348)
(339,347)(340,349)(341,351)(342,350)(353,354)(356,357)(359,360)(361,370)
(362,372)(363,371)(364,373)(365,375)(366,374)(367,376)(368,378)(369,377)
(380,381)(383,384)(386,387)(388,397)(389,399)(390,398)(391,400)(392,402)
(393,401)(394,403)(395,405)(396,404)(407,408)(410,411)(413,414)(415,424)
(416,426)(417,425)(418,427)(419,429)(420,428)(421,430)(422,432)(423,431);;
s1 := (  1, 10)(  2, 12)(  3, 11)(  4, 14)(  5, 13)(  6, 15)(  7, 18)(  8, 17)
(  9, 16)( 20, 21)( 22, 23)( 25, 27)( 28, 37)( 29, 39)( 30, 38)( 31, 41)
( 32, 40)( 33, 42)( 34, 45)( 35, 44)( 36, 43)( 47, 48)( 49, 50)( 52, 54)
( 55, 64)( 56, 66)( 57, 65)( 58, 68)( 59, 67)( 60, 69)( 61, 72)( 62, 71)
( 63, 70)( 74, 75)( 76, 77)( 79, 81)( 82, 91)( 83, 93)( 84, 92)( 85, 95)
( 86, 94)( 87, 96)( 88, 99)( 89, 98)( 90, 97)(101,102)(103,104)(106,108)
(109,118)(110,120)(111,119)(112,122)(113,121)(114,123)(115,126)(116,125)
(117,124)(128,129)(130,131)(133,135)(136,145)(137,147)(138,146)(139,149)
(140,148)(141,150)(142,153)(143,152)(144,151)(155,156)(157,158)(160,162)
(163,172)(164,174)(165,173)(166,176)(167,175)(168,177)(169,180)(170,179)
(171,178)(182,183)(184,185)(187,189)(190,199)(191,201)(192,200)(193,203)
(194,202)(195,204)(196,207)(197,206)(198,205)(209,210)(211,212)(214,216)
(217,226)(218,228)(219,227)(220,230)(221,229)(222,231)(223,234)(224,233)
(225,232)(236,237)(238,239)(241,243)(244,253)(245,255)(246,254)(247,257)
(248,256)(249,258)(250,261)(251,260)(252,259)(263,264)(265,266)(268,270)
(271,280)(272,282)(273,281)(274,284)(275,283)(276,285)(277,288)(278,287)
(279,286)(290,291)(292,293)(295,297)(298,307)(299,309)(300,308)(301,311)
(302,310)(303,312)(304,315)(305,314)(306,313)(317,318)(319,320)(322,324)
(325,334)(326,336)(327,335)(328,338)(329,337)(330,339)(331,342)(332,341)
(333,340)(344,345)(346,347)(349,351)(352,361)(353,363)(354,362)(355,365)
(356,364)(357,366)(358,369)(359,368)(360,367)(371,372)(373,374)(376,378)
(379,388)(380,390)(381,389)(382,392)(383,391)(384,393)(385,396)(386,395)
(387,394)(398,399)(400,401)(403,405)(406,415)(407,417)(408,416)(409,419)
(410,418)(411,420)(412,423)(413,422)(414,421)(425,426)(427,428)(430,432);;
s2 := (  1,  4)(  2,  6)(  3,  5)(  8,  9)( 10, 13)( 11, 15)( 12, 14)( 17, 18)
( 19, 22)( 20, 24)( 21, 23)( 26, 27)( 28, 31)( 29, 33)( 30, 32)( 35, 36)
( 37, 40)( 38, 42)( 39, 41)( 44, 45)( 46, 49)( 47, 51)( 48, 50)( 53, 54)
( 55, 85)( 56, 87)( 57, 86)( 58, 82)( 59, 84)( 60, 83)( 61, 88)( 62, 90)
( 63, 89)( 64, 94)( 65, 96)( 66, 95)( 67, 91)( 68, 93)( 69, 92)( 70, 97)
( 71, 99)( 72, 98)( 73,103)( 74,105)( 75,104)( 76,100)( 77,102)( 78,101)
( 79,106)( 80,108)( 81,107)(109,166)(110,168)(111,167)(112,163)(113,165)
(114,164)(115,169)(116,171)(117,170)(118,175)(119,177)(120,176)(121,172)
(122,174)(123,173)(124,178)(125,180)(126,179)(127,184)(128,186)(129,185)
(130,181)(131,183)(132,182)(133,187)(134,189)(135,188)(136,193)(137,195)
(138,194)(139,190)(140,192)(141,191)(142,196)(143,198)(144,197)(145,202)
(146,204)(147,203)(148,199)(149,201)(150,200)(151,205)(152,207)(153,206)
(154,211)(155,213)(156,212)(157,208)(158,210)(159,209)(160,214)(161,216)
(162,215)(217,328)(218,330)(219,329)(220,325)(221,327)(222,326)(223,331)
(224,333)(225,332)(226,337)(227,339)(228,338)(229,334)(230,336)(231,335)
(232,340)(233,342)(234,341)(235,346)(236,348)(237,347)(238,343)(239,345)
(240,344)(241,349)(242,351)(243,350)(244,355)(245,357)(246,356)(247,352)
(248,354)(249,353)(250,358)(251,360)(252,359)(253,364)(254,366)(255,365)
(256,361)(257,363)(258,362)(259,367)(260,369)(261,368)(262,373)(263,375)
(264,374)(265,370)(266,372)(267,371)(268,376)(269,378)(270,377)(271,409)
(272,411)(273,410)(274,406)(275,408)(276,407)(277,412)(278,414)(279,413)
(280,418)(281,420)(282,419)(283,415)(284,417)(285,416)(286,421)(287,423)
(288,422)(289,427)(290,429)(291,428)(292,424)(293,426)(294,425)(295,430)
(296,432)(297,431)(298,382)(299,384)(300,383)(301,379)(302,381)(303,380)
(304,385)(305,387)(306,386)(307,391)(308,393)(309,392)(310,388)(311,390)
(312,389)(313,394)(314,396)(315,395)(316,400)(317,402)(318,401)(319,397)
(320,399)(321,398)(322,403)(323,405)(324,404);;
s3 := (  1,217)(  2,219)(  3,218)(  4,223)(  5,225)(  6,224)(  7,220)(  8,222)
(  9,221)( 10,226)( 11,228)( 12,227)( 13,232)( 14,234)( 15,233)( 16,229)
( 17,231)( 18,230)( 19,235)( 20,237)( 21,236)( 22,241)( 23,243)( 24,242)
( 25,238)( 26,240)( 27,239)( 28,244)( 29,246)( 30,245)( 31,250)( 32,252)
( 33,251)( 34,247)( 35,249)( 36,248)( 37,253)( 38,255)( 39,254)( 40,259)
( 41,261)( 42,260)( 43,256)( 44,258)( 45,257)( 46,262)( 47,264)( 48,263)
( 49,268)( 50,270)( 51,269)( 52,265)( 53,267)( 54,266)( 55,298)( 56,300)
( 57,299)( 58,304)( 59,306)( 60,305)( 61,301)( 62,303)( 63,302)( 64,307)
( 65,309)( 66,308)( 67,313)( 68,315)( 69,314)( 70,310)( 71,312)( 72,311)
( 73,316)( 74,318)( 75,317)( 76,322)( 77,324)( 78,323)( 79,319)( 80,321)
( 81,320)( 82,271)( 83,273)( 84,272)( 85,277)( 86,279)( 87,278)( 88,274)
( 89,276)( 90,275)( 91,280)( 92,282)( 93,281)( 94,286)( 95,288)( 96,287)
( 97,283)( 98,285)( 99,284)(100,289)(101,291)(102,290)(103,295)(104,297)
(105,296)(106,292)(107,294)(108,293)(109,379)(110,381)(111,380)(112,385)
(113,387)(114,386)(115,382)(116,384)(117,383)(118,388)(119,390)(120,389)
(121,394)(122,396)(123,395)(124,391)(125,393)(126,392)(127,397)(128,399)
(129,398)(130,403)(131,405)(132,404)(133,400)(134,402)(135,401)(136,406)
(137,408)(138,407)(139,412)(140,414)(141,413)(142,409)(143,411)(144,410)
(145,415)(146,417)(147,416)(148,421)(149,423)(150,422)(151,418)(152,420)
(153,419)(154,424)(155,426)(156,425)(157,430)(158,432)(159,431)(160,427)
(161,429)(162,428)(163,325)(164,327)(165,326)(166,331)(167,333)(168,332)
(169,328)(170,330)(171,329)(172,334)(173,336)(174,335)(175,340)(176,342)
(177,341)(178,337)(179,339)(180,338)(181,343)(182,345)(183,344)(184,349)
(185,351)(186,350)(187,346)(188,348)(189,347)(190,352)(191,354)(192,353)
(193,358)(194,360)(195,359)(196,355)(197,357)(198,356)(199,361)(200,363)
(201,362)(202,367)(203,369)(204,368)(205,364)(206,366)(207,365)(208,370)
(209,372)(210,371)(211,376)(212,378)(213,377)(214,373)(215,375)(216,374);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(432)!(  2,  3)(  5,  6)(  8,  9)( 10, 19)( 11, 21)( 12, 20)( 13, 22)
( 14, 24)( 15, 23)( 16, 25)( 17, 27)( 18, 26)( 29, 30)( 32, 33)( 35, 36)
( 37, 46)( 38, 48)( 39, 47)( 40, 49)( 41, 51)( 42, 50)( 43, 52)( 44, 54)
( 45, 53)( 56, 57)( 59, 60)( 62, 63)( 64, 73)( 65, 75)( 66, 74)( 67, 76)
( 68, 78)( 69, 77)( 70, 79)( 71, 81)( 72, 80)( 83, 84)( 86, 87)( 89, 90)
( 91,100)( 92,102)( 93,101)( 94,103)( 95,105)( 96,104)( 97,106)( 98,108)
( 99,107)(110,111)(113,114)(116,117)(118,127)(119,129)(120,128)(121,130)
(122,132)(123,131)(124,133)(125,135)(126,134)(137,138)(140,141)(143,144)
(145,154)(146,156)(147,155)(148,157)(149,159)(150,158)(151,160)(152,162)
(153,161)(164,165)(167,168)(170,171)(172,181)(173,183)(174,182)(175,184)
(176,186)(177,185)(178,187)(179,189)(180,188)(191,192)(194,195)(197,198)
(199,208)(200,210)(201,209)(202,211)(203,213)(204,212)(205,214)(206,216)
(207,215)(218,219)(221,222)(224,225)(226,235)(227,237)(228,236)(229,238)
(230,240)(231,239)(232,241)(233,243)(234,242)(245,246)(248,249)(251,252)
(253,262)(254,264)(255,263)(256,265)(257,267)(258,266)(259,268)(260,270)
(261,269)(272,273)(275,276)(278,279)(280,289)(281,291)(282,290)(283,292)
(284,294)(285,293)(286,295)(287,297)(288,296)(299,300)(302,303)(305,306)
(307,316)(308,318)(309,317)(310,319)(311,321)(312,320)(313,322)(314,324)
(315,323)(326,327)(329,330)(332,333)(334,343)(335,345)(336,344)(337,346)
(338,348)(339,347)(340,349)(341,351)(342,350)(353,354)(356,357)(359,360)
(361,370)(362,372)(363,371)(364,373)(365,375)(366,374)(367,376)(368,378)
(369,377)(380,381)(383,384)(386,387)(388,397)(389,399)(390,398)(391,400)
(392,402)(393,401)(394,403)(395,405)(396,404)(407,408)(410,411)(413,414)
(415,424)(416,426)(417,425)(418,427)(419,429)(420,428)(421,430)(422,432)
(423,431);
s1 := Sym(432)!(  1, 10)(  2, 12)(  3, 11)(  4, 14)(  5, 13)(  6, 15)(  7, 18)
(  8, 17)(  9, 16)( 20, 21)( 22, 23)( 25, 27)( 28, 37)( 29, 39)( 30, 38)
( 31, 41)( 32, 40)( 33, 42)( 34, 45)( 35, 44)( 36, 43)( 47, 48)( 49, 50)
( 52, 54)( 55, 64)( 56, 66)( 57, 65)( 58, 68)( 59, 67)( 60, 69)( 61, 72)
( 62, 71)( 63, 70)( 74, 75)( 76, 77)( 79, 81)( 82, 91)( 83, 93)( 84, 92)
( 85, 95)( 86, 94)( 87, 96)( 88, 99)( 89, 98)( 90, 97)(101,102)(103,104)
(106,108)(109,118)(110,120)(111,119)(112,122)(113,121)(114,123)(115,126)
(116,125)(117,124)(128,129)(130,131)(133,135)(136,145)(137,147)(138,146)
(139,149)(140,148)(141,150)(142,153)(143,152)(144,151)(155,156)(157,158)
(160,162)(163,172)(164,174)(165,173)(166,176)(167,175)(168,177)(169,180)
(170,179)(171,178)(182,183)(184,185)(187,189)(190,199)(191,201)(192,200)
(193,203)(194,202)(195,204)(196,207)(197,206)(198,205)(209,210)(211,212)
(214,216)(217,226)(218,228)(219,227)(220,230)(221,229)(222,231)(223,234)
(224,233)(225,232)(236,237)(238,239)(241,243)(244,253)(245,255)(246,254)
(247,257)(248,256)(249,258)(250,261)(251,260)(252,259)(263,264)(265,266)
(268,270)(271,280)(272,282)(273,281)(274,284)(275,283)(276,285)(277,288)
(278,287)(279,286)(290,291)(292,293)(295,297)(298,307)(299,309)(300,308)
(301,311)(302,310)(303,312)(304,315)(305,314)(306,313)(317,318)(319,320)
(322,324)(325,334)(326,336)(327,335)(328,338)(329,337)(330,339)(331,342)
(332,341)(333,340)(344,345)(346,347)(349,351)(352,361)(353,363)(354,362)
(355,365)(356,364)(357,366)(358,369)(359,368)(360,367)(371,372)(373,374)
(376,378)(379,388)(380,390)(381,389)(382,392)(383,391)(384,393)(385,396)
(386,395)(387,394)(398,399)(400,401)(403,405)(406,415)(407,417)(408,416)
(409,419)(410,418)(411,420)(412,423)(413,422)(414,421)(425,426)(427,428)
(430,432);
s2 := Sym(432)!(  1,  4)(  2,  6)(  3,  5)(  8,  9)( 10, 13)( 11, 15)( 12, 14)
( 17, 18)( 19, 22)( 20, 24)( 21, 23)( 26, 27)( 28, 31)( 29, 33)( 30, 32)
( 35, 36)( 37, 40)( 38, 42)( 39, 41)( 44, 45)( 46, 49)( 47, 51)( 48, 50)
( 53, 54)( 55, 85)( 56, 87)( 57, 86)( 58, 82)( 59, 84)( 60, 83)( 61, 88)
( 62, 90)( 63, 89)( 64, 94)( 65, 96)( 66, 95)( 67, 91)( 68, 93)( 69, 92)
( 70, 97)( 71, 99)( 72, 98)( 73,103)( 74,105)( 75,104)( 76,100)( 77,102)
( 78,101)( 79,106)( 80,108)( 81,107)(109,166)(110,168)(111,167)(112,163)
(113,165)(114,164)(115,169)(116,171)(117,170)(118,175)(119,177)(120,176)
(121,172)(122,174)(123,173)(124,178)(125,180)(126,179)(127,184)(128,186)
(129,185)(130,181)(131,183)(132,182)(133,187)(134,189)(135,188)(136,193)
(137,195)(138,194)(139,190)(140,192)(141,191)(142,196)(143,198)(144,197)
(145,202)(146,204)(147,203)(148,199)(149,201)(150,200)(151,205)(152,207)
(153,206)(154,211)(155,213)(156,212)(157,208)(158,210)(159,209)(160,214)
(161,216)(162,215)(217,328)(218,330)(219,329)(220,325)(221,327)(222,326)
(223,331)(224,333)(225,332)(226,337)(227,339)(228,338)(229,334)(230,336)
(231,335)(232,340)(233,342)(234,341)(235,346)(236,348)(237,347)(238,343)
(239,345)(240,344)(241,349)(242,351)(243,350)(244,355)(245,357)(246,356)
(247,352)(248,354)(249,353)(250,358)(251,360)(252,359)(253,364)(254,366)
(255,365)(256,361)(257,363)(258,362)(259,367)(260,369)(261,368)(262,373)
(263,375)(264,374)(265,370)(266,372)(267,371)(268,376)(269,378)(270,377)
(271,409)(272,411)(273,410)(274,406)(275,408)(276,407)(277,412)(278,414)
(279,413)(280,418)(281,420)(282,419)(283,415)(284,417)(285,416)(286,421)
(287,423)(288,422)(289,427)(290,429)(291,428)(292,424)(293,426)(294,425)
(295,430)(296,432)(297,431)(298,382)(299,384)(300,383)(301,379)(302,381)
(303,380)(304,385)(305,387)(306,386)(307,391)(308,393)(309,392)(310,388)
(311,390)(312,389)(313,394)(314,396)(315,395)(316,400)(317,402)(318,401)
(319,397)(320,399)(321,398)(322,403)(323,405)(324,404);
s3 := Sym(432)!(  1,217)(  2,219)(  3,218)(  4,223)(  5,225)(  6,224)(  7,220)
(  8,222)(  9,221)( 10,226)( 11,228)( 12,227)( 13,232)( 14,234)( 15,233)
( 16,229)( 17,231)( 18,230)( 19,235)( 20,237)( 21,236)( 22,241)( 23,243)
( 24,242)( 25,238)( 26,240)( 27,239)( 28,244)( 29,246)( 30,245)( 31,250)
( 32,252)( 33,251)( 34,247)( 35,249)( 36,248)( 37,253)( 38,255)( 39,254)
( 40,259)( 41,261)( 42,260)( 43,256)( 44,258)( 45,257)( 46,262)( 47,264)
( 48,263)( 49,268)( 50,270)( 51,269)( 52,265)( 53,267)( 54,266)( 55,298)
( 56,300)( 57,299)( 58,304)( 59,306)( 60,305)( 61,301)( 62,303)( 63,302)
( 64,307)( 65,309)( 66,308)( 67,313)( 68,315)( 69,314)( 70,310)( 71,312)
( 72,311)( 73,316)( 74,318)( 75,317)( 76,322)( 77,324)( 78,323)( 79,319)
( 80,321)( 81,320)( 82,271)( 83,273)( 84,272)( 85,277)( 86,279)( 87,278)
( 88,274)( 89,276)( 90,275)( 91,280)( 92,282)( 93,281)( 94,286)( 95,288)
( 96,287)( 97,283)( 98,285)( 99,284)(100,289)(101,291)(102,290)(103,295)
(104,297)(105,296)(106,292)(107,294)(108,293)(109,379)(110,381)(111,380)
(112,385)(113,387)(114,386)(115,382)(116,384)(117,383)(118,388)(119,390)
(120,389)(121,394)(122,396)(123,395)(124,391)(125,393)(126,392)(127,397)
(128,399)(129,398)(130,403)(131,405)(132,404)(133,400)(134,402)(135,401)
(136,406)(137,408)(138,407)(139,412)(140,414)(141,413)(142,409)(143,411)
(144,410)(145,415)(146,417)(147,416)(148,421)(149,423)(150,422)(151,418)
(152,420)(153,419)(154,424)(155,426)(156,425)(157,430)(158,432)(159,431)
(160,427)(161,429)(162,428)(163,325)(164,327)(165,326)(166,331)(167,333)
(168,332)(169,328)(170,330)(171,329)(172,334)(173,336)(174,335)(175,340)
(176,342)(177,341)(178,337)(179,339)(180,338)(181,343)(182,345)(183,344)
(184,349)(185,351)(186,350)(187,346)(188,348)(189,347)(190,352)(191,354)
(192,353)(193,358)(194,360)(195,359)(196,355)(197,357)(198,356)(199,361)
(200,363)(201,362)(202,367)(203,369)(204,368)(205,364)(206,366)(207,365)
(208,370)(209,372)(210,371)(211,376)(212,378)(213,377)(214,373)(215,375)
(216,374);
poly := sub<Sym(432)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 
References : None.
to this polytope