Polytope of Type {6,2,36,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,2,36,2}*1728
if this polytope has a name.
Group : SmallGroup(1728,30764)
Rank : 5
Schlafli Type : {6,2,36,2}
Number of vertices, edges, etc : 6, 6, 36, 36, 2
Order of s0s1s2s3s4 : 36
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,2,36,2}*864, {6,2,18,2}*864
   3-fold quotients : {2,2,36,2}*576, {6,2,12,2}*576
   4-fold quotients : {3,2,18,2}*432, {6,2,9,2}*432
   6-fold quotients : {2,2,18,2}*288, {3,2,12,2}*288, {6,2,6,2}*288
   8-fold quotients : {3,2,9,2}*216
   9-fold quotients : {2,2,12,2}*192, {6,2,4,2}*192
   12-fold quotients : {2,2,9,2}*144, {3,2,6,2}*144, {6,2,3,2}*144
   18-fold quotients : {3,2,4,2}*96, {2,2,6,2}*96, {6,2,2,2}*96
   24-fold quotients : {3,2,3,2}*72
   27-fold quotients : {2,2,4,2}*64
   36-fold quotients : {2,2,3,2}*48, {3,2,2,2}*48
   54-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (3,4)(5,6);;
s1 := (1,5)(2,3)(4,6);;
s2 := ( 8, 9)(10,11)(13,16)(14,15)(17,18)(19,20)(21,24)(22,23)(25,26)(27,28)
(29,32)(30,31)(33,34)(35,36)(37,40)(38,39)(41,42);;
s3 := ( 7,13)( 8,10)( 9,19)(11,21)(12,15)(14,17)(16,27)(18,29)(20,23)(22,25)
(24,35)(26,37)(28,31)(30,33)(32,41)(34,38)(36,39)(40,42);;
s4 := (43,44);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(44)!(3,4)(5,6);
s1 := Sym(44)!(1,5)(2,3)(4,6);
s2 := Sym(44)!( 8, 9)(10,11)(13,16)(14,15)(17,18)(19,20)(21,24)(22,23)(25,26)
(27,28)(29,32)(30,31)(33,34)(35,36)(37,40)(38,39)(41,42);
s3 := Sym(44)!( 7,13)( 8,10)( 9,19)(11,21)(12,15)(14,17)(16,27)(18,29)(20,23)
(22,25)(24,35)(26,37)(28,31)(30,33)(32,41)(34,38)(36,39)(40,42);
s4 := Sym(44)!(43,44);
poly := sub<Sym(44)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope