include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,6,12,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,12,2}*1728b
if this polytope has a name.
Group : SmallGroup(1728,30782)
Rank : 5
Schlafli Type : {2,6,12,2}
Number of vertices, edges, etc : 2, 18, 108, 36, 2
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,6,6,2}*864b
3-fold quotients : {2,6,12,2}*576a
4-fold quotients : {2,6,6,2}*432
6-fold quotients : {2,6,6,2}*288a
9-fold quotients : {2,2,12,2}*192, {2,6,4,2}*192a
18-fold quotients : {2,2,6,2}*96, {2,6,2,2}*96
27-fold quotients : {2,2,4,2}*64
36-fold quotients : {2,2,3,2}*48, {2,3,2,2}*48
54-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 6, 9)( 7, 11)( 8, 10)( 13, 14)( 15, 18)( 16, 20)( 17, 19)
( 22, 23)( 24, 27)( 25, 29)( 26, 28)( 31, 32)( 33, 36)( 34, 38)( 35, 37)
( 40, 41)( 42, 45)( 43, 47)( 44, 46)( 49, 50)( 51, 54)( 52, 56)( 53, 55)
( 58, 59)( 60, 63)( 61, 65)( 62, 64)( 67, 68)( 69, 72)( 70, 74)( 71, 73)
( 76, 77)( 78, 81)( 79, 83)( 80, 82)( 85, 86)( 87, 90)( 88, 92)( 89, 91)
( 94, 95)( 96, 99)( 97,101)( 98,100)(103,104)(105,108)(106,110)(107,109);;
s2 := ( 3, 6)( 4, 7)( 5, 8)( 12, 24)( 13, 25)( 14, 26)( 15, 21)( 16, 22)
( 17, 23)( 18, 27)( 19, 28)( 20, 29)( 30, 33)( 31, 34)( 32, 35)( 39, 51)
( 40, 52)( 41, 53)( 42, 48)( 43, 49)( 44, 50)( 45, 54)( 46, 55)( 47, 56)
( 57, 87)( 58, 88)( 59, 89)( 60, 84)( 61, 85)( 62, 86)( 63, 90)( 64, 91)
( 65, 92)( 66,105)( 67,106)( 68,107)( 69,102)( 70,103)( 71,104)( 72,108)
( 73,109)( 74,110)( 75, 96)( 76, 97)( 77, 98)( 78, 93)( 79, 94)( 80, 95)
( 81, 99)( 82,100)( 83,101);;
s3 := ( 3, 66)( 4, 68)( 5, 67)( 6, 70)( 7, 69)( 8, 71)( 9, 74)( 10, 73)
( 11, 72)( 12, 57)( 13, 59)( 14, 58)( 15, 61)( 16, 60)( 17, 62)( 18, 65)
( 19, 64)( 20, 63)( 21, 75)( 22, 77)( 23, 76)( 24, 79)( 25, 78)( 26, 80)
( 27, 83)( 28, 82)( 29, 81)( 30, 93)( 31, 95)( 32, 94)( 33, 97)( 34, 96)
( 35, 98)( 36,101)( 37,100)( 38, 99)( 39, 84)( 40, 86)( 41, 85)( 42, 88)
( 43, 87)( 44, 89)( 45, 92)( 46, 91)( 47, 90)( 48,102)( 49,104)( 50,103)
( 51,106)( 52,105)( 53,107)( 54,110)( 55,109)( 56,108);;
s4 := (111,112);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s3*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(112)!(1,2);
s1 := Sym(112)!( 4, 5)( 6, 9)( 7, 11)( 8, 10)( 13, 14)( 15, 18)( 16, 20)
( 17, 19)( 22, 23)( 24, 27)( 25, 29)( 26, 28)( 31, 32)( 33, 36)( 34, 38)
( 35, 37)( 40, 41)( 42, 45)( 43, 47)( 44, 46)( 49, 50)( 51, 54)( 52, 56)
( 53, 55)( 58, 59)( 60, 63)( 61, 65)( 62, 64)( 67, 68)( 69, 72)( 70, 74)
( 71, 73)( 76, 77)( 78, 81)( 79, 83)( 80, 82)( 85, 86)( 87, 90)( 88, 92)
( 89, 91)( 94, 95)( 96, 99)( 97,101)( 98,100)(103,104)(105,108)(106,110)
(107,109);
s2 := Sym(112)!( 3, 6)( 4, 7)( 5, 8)( 12, 24)( 13, 25)( 14, 26)( 15, 21)
( 16, 22)( 17, 23)( 18, 27)( 19, 28)( 20, 29)( 30, 33)( 31, 34)( 32, 35)
( 39, 51)( 40, 52)( 41, 53)( 42, 48)( 43, 49)( 44, 50)( 45, 54)( 46, 55)
( 47, 56)( 57, 87)( 58, 88)( 59, 89)( 60, 84)( 61, 85)( 62, 86)( 63, 90)
( 64, 91)( 65, 92)( 66,105)( 67,106)( 68,107)( 69,102)( 70,103)( 71,104)
( 72,108)( 73,109)( 74,110)( 75, 96)( 76, 97)( 77, 98)( 78, 93)( 79, 94)
( 80, 95)( 81, 99)( 82,100)( 83,101);
s3 := Sym(112)!( 3, 66)( 4, 68)( 5, 67)( 6, 70)( 7, 69)( 8, 71)( 9, 74)
( 10, 73)( 11, 72)( 12, 57)( 13, 59)( 14, 58)( 15, 61)( 16, 60)( 17, 62)
( 18, 65)( 19, 64)( 20, 63)( 21, 75)( 22, 77)( 23, 76)( 24, 79)( 25, 78)
( 26, 80)( 27, 83)( 28, 82)( 29, 81)( 30, 93)( 31, 95)( 32, 94)( 33, 97)
( 34, 96)( 35, 98)( 36,101)( 37,100)( 38, 99)( 39, 84)( 40, 86)( 41, 85)
( 42, 88)( 43, 87)( 44, 89)( 45, 92)( 46, 91)( 47, 90)( 48,102)( 49,104)
( 50,103)( 51,106)( 52,105)( 53,107)( 54,110)( 55,109)( 56,108);
s4 := Sym(112)!(111,112);
poly := sub<Sym(112)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s3*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope