include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,6,18,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,18,4}*1728a
if this polytope has a name.
Group : SmallGroup(1728,30790)
Rank : 5
Schlafli Type : {2,6,18,4}
Number of vertices, edges, etc : 2, 6, 54, 36, 4
Order of s0s1s2s3s4 : 36
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,6,18,2}*864a
3-fold quotients : {2,2,18,4}*576a, {2,6,6,4}*576a
6-fold quotients : {2,2,18,2}*288, {2,6,6,2}*288a
9-fold quotients : {2,2,6,4}*192a, {2,6,2,4}*192
12-fold quotients : {2,2,9,2}*144
18-fold quotients : {2,3,2,4}*96, {2,2,6,2}*96, {2,6,2,2}*96
27-fold quotients : {2,2,2,4}*64
36-fold quotients : {2,2,3,2}*48, {2,3,2,2}*48
54-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 6, 9)( 7, 10)( 8, 11)( 15, 18)( 16, 19)( 17, 20)( 24, 27)( 25, 28)
( 26, 29)( 33, 36)( 34, 37)( 35, 38)( 42, 45)( 43, 46)( 44, 47)( 51, 54)
( 52, 55)( 53, 56)( 60, 63)( 61, 64)( 62, 65)( 69, 72)( 70, 73)( 71, 74)
( 78, 81)( 79, 82)( 80, 83)( 87, 90)( 88, 91)( 89, 92)( 96, 99)( 97,100)
( 98,101)(105,108)(106,109)(107,110);;
s2 := ( 3, 6)( 4, 8)( 5, 7)( 10, 11)( 12, 26)( 13, 25)( 14, 24)( 15, 23)
( 16, 22)( 17, 21)( 18, 29)( 19, 28)( 20, 27)( 30, 33)( 31, 35)( 32, 34)
( 37, 38)( 39, 53)( 40, 52)( 41, 51)( 42, 50)( 43, 49)( 44, 48)( 45, 56)
( 46, 55)( 47, 54)( 57, 60)( 58, 62)( 59, 61)( 64, 65)( 66, 80)( 67, 79)
( 68, 78)( 69, 77)( 70, 76)( 71, 75)( 72, 83)( 73, 82)( 74, 81)( 84, 87)
( 85, 89)( 86, 88)( 91, 92)( 93,107)( 94,106)( 95,105)( 96,104)( 97,103)
( 98,102)( 99,110)(100,109)(101,108);;
s3 := ( 3, 12)( 4, 14)( 5, 13)( 6, 15)( 7, 17)( 8, 16)( 9, 18)( 10, 20)
( 11, 19)( 21, 23)( 24, 26)( 27, 29)( 30, 39)( 31, 41)( 32, 40)( 33, 42)
( 34, 44)( 35, 43)( 36, 45)( 37, 47)( 38, 46)( 48, 50)( 51, 53)( 54, 56)
( 57, 93)( 58, 95)( 59, 94)( 60, 96)( 61, 98)( 62, 97)( 63, 99)( 64,101)
( 65,100)( 66, 84)( 67, 86)( 68, 85)( 69, 87)( 70, 89)( 71, 88)( 72, 90)
( 73, 92)( 74, 91)( 75,104)( 76,103)( 77,102)( 78,107)( 79,106)( 80,105)
( 81,110)( 82,109)( 83,108);;
s4 := ( 3, 57)( 4, 58)( 5, 59)( 6, 60)( 7, 61)( 8, 62)( 9, 63)( 10, 64)
( 11, 65)( 12, 66)( 13, 67)( 14, 68)( 15, 69)( 16, 70)( 17, 71)( 18, 72)
( 19, 73)( 20, 74)( 21, 75)( 22, 76)( 23, 77)( 24, 78)( 25, 79)( 26, 80)
( 27, 81)( 28, 82)( 29, 83)( 30, 84)( 31, 85)( 32, 86)( 33, 87)( 34, 88)
( 35, 89)( 36, 90)( 37, 91)( 38, 92)( 39, 93)( 40, 94)( 41, 95)( 42, 96)
( 43, 97)( 44, 98)( 45, 99)( 46,100)( 47,101)( 48,102)( 49,103)( 50,104)
( 51,105)( 52,106)( 53,107)( 54,108)( 55,109)( 56,110);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s4*s3*s2*s3*s4*s3,
s3*s4*s3*s4*s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(110)!(1,2);
s1 := Sym(110)!( 6, 9)( 7, 10)( 8, 11)( 15, 18)( 16, 19)( 17, 20)( 24, 27)
( 25, 28)( 26, 29)( 33, 36)( 34, 37)( 35, 38)( 42, 45)( 43, 46)( 44, 47)
( 51, 54)( 52, 55)( 53, 56)( 60, 63)( 61, 64)( 62, 65)( 69, 72)( 70, 73)
( 71, 74)( 78, 81)( 79, 82)( 80, 83)( 87, 90)( 88, 91)( 89, 92)( 96, 99)
( 97,100)( 98,101)(105,108)(106,109)(107,110);
s2 := Sym(110)!( 3, 6)( 4, 8)( 5, 7)( 10, 11)( 12, 26)( 13, 25)( 14, 24)
( 15, 23)( 16, 22)( 17, 21)( 18, 29)( 19, 28)( 20, 27)( 30, 33)( 31, 35)
( 32, 34)( 37, 38)( 39, 53)( 40, 52)( 41, 51)( 42, 50)( 43, 49)( 44, 48)
( 45, 56)( 46, 55)( 47, 54)( 57, 60)( 58, 62)( 59, 61)( 64, 65)( 66, 80)
( 67, 79)( 68, 78)( 69, 77)( 70, 76)( 71, 75)( 72, 83)( 73, 82)( 74, 81)
( 84, 87)( 85, 89)( 86, 88)( 91, 92)( 93,107)( 94,106)( 95,105)( 96,104)
( 97,103)( 98,102)( 99,110)(100,109)(101,108);
s3 := Sym(110)!( 3, 12)( 4, 14)( 5, 13)( 6, 15)( 7, 17)( 8, 16)( 9, 18)
( 10, 20)( 11, 19)( 21, 23)( 24, 26)( 27, 29)( 30, 39)( 31, 41)( 32, 40)
( 33, 42)( 34, 44)( 35, 43)( 36, 45)( 37, 47)( 38, 46)( 48, 50)( 51, 53)
( 54, 56)( 57, 93)( 58, 95)( 59, 94)( 60, 96)( 61, 98)( 62, 97)( 63, 99)
( 64,101)( 65,100)( 66, 84)( 67, 86)( 68, 85)( 69, 87)( 70, 89)( 71, 88)
( 72, 90)( 73, 92)( 74, 91)( 75,104)( 76,103)( 77,102)( 78,107)( 79,106)
( 80,105)( 81,110)( 82,109)( 83,108);
s4 := Sym(110)!( 3, 57)( 4, 58)( 5, 59)( 6, 60)( 7, 61)( 8, 62)( 9, 63)
( 10, 64)( 11, 65)( 12, 66)( 13, 67)( 14, 68)( 15, 69)( 16, 70)( 17, 71)
( 18, 72)( 19, 73)( 20, 74)( 21, 75)( 22, 76)( 23, 77)( 24, 78)( 25, 79)
( 26, 80)( 27, 81)( 28, 82)( 29, 83)( 30, 84)( 31, 85)( 32, 86)( 33, 87)
( 34, 88)( 35, 89)( 36, 90)( 37, 91)( 38, 92)( 39, 93)( 40, 94)( 41, 95)
( 42, 96)( 43, 97)( 44, 98)( 45, 99)( 46,100)( 47,101)( 48,102)( 49,103)
( 50,104)( 51,105)( 52,106)( 53,107)( 54,108)( 55,109)( 56,110);
poly := sub<Sym(110)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope