include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,2,4,2,18}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,4,2,18}*1728
if this polytope has a name.
Group : SmallGroup(1728,30790)
Rank : 6
Schlafli Type : {3,2,4,2,18}
Number of vertices, edges, etc : 3, 3, 4, 4, 18, 18
Order of s0s1s2s3s4s5 : 36
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,4,2,9}*864, {3,2,2,2,18}*864
3-fold quotients : {3,2,4,2,6}*576
4-fold quotients : {3,2,2,2,9}*432
6-fold quotients : {3,2,4,2,3}*288, {3,2,2,2,6}*288
9-fold quotients : {3,2,4,2,2}*192
12-fold quotients : {3,2,2,2,3}*144
18-fold quotients : {3,2,2,2,2}*96
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := (5,6);;
s3 := (4,5)(6,7);;
s4 := (10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25);;
s5 := ( 8,12)( 9,10)(11,16)(13,14)(15,20)(17,18)(19,24)(21,22)(23,25);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3,
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(25)!(2,3);
s1 := Sym(25)!(1,2);
s2 := Sym(25)!(5,6);
s3 := Sym(25)!(4,5)(6,7);
s4 := Sym(25)!(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25);
s5 := Sym(25)!( 8,12)( 9,10)(11,16)(13,14)(15,20)(17,18)(19,24)(21,22)(23,25);
poly := sub<Sym(25)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3,
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 >;
to this polytope