Polytope of Type {2,6,6,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,6,4}*1728b
if this polytope has a name.
Group : SmallGroup(1728,30804)
Rank : 5
Schlafli Type : {2,6,6,4}
Number of vertices, edges, etc : 2, 18, 54, 36, 4
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,6,6,2}*864b
   3-fold quotients : {2,6,6,4}*576a
   4-fold quotients : {2,6,6,2}*432
   6-fold quotients : {2,6,6,2}*288a
   9-fold quotients : {2,2,6,4}*192a, {2,6,2,4}*192
   18-fold quotients : {2,3,2,4}*96, {2,2,6,2}*96, {2,6,2,2}*96
   27-fold quotients : {2,2,2,4}*64
   36-fold quotients : {2,2,3,2}*48, {2,3,2,2}*48
   54-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4,  5)(  6,  9)(  7, 11)(  8, 10)( 13, 14)( 15, 18)( 16, 20)( 17, 19)
( 22, 23)( 24, 27)( 25, 29)( 26, 28)( 31, 32)( 33, 36)( 34, 38)( 35, 37)
( 40, 41)( 42, 45)( 43, 47)( 44, 46)( 49, 50)( 51, 54)( 52, 56)( 53, 55)
( 58, 59)( 60, 63)( 61, 65)( 62, 64)( 67, 68)( 69, 72)( 70, 74)( 71, 73)
( 76, 77)( 78, 81)( 79, 83)( 80, 82)( 85, 86)( 87, 90)( 88, 92)( 89, 91)
( 94, 95)( 96, 99)( 97,101)( 98,100)(103,104)(105,108)(106,110)(107,109);;
s2 := (  3,  6)(  4,  7)(  5,  8)( 12, 24)( 13, 25)( 14, 26)( 15, 21)( 16, 22)
( 17, 23)( 18, 27)( 19, 28)( 20, 29)( 30, 33)( 31, 34)( 32, 35)( 39, 51)
( 40, 52)( 41, 53)( 42, 48)( 43, 49)( 44, 50)( 45, 54)( 46, 55)( 47, 56)
( 57, 60)( 58, 61)( 59, 62)( 66, 78)( 67, 79)( 68, 80)( 69, 75)( 70, 76)
( 71, 77)( 72, 81)( 73, 82)( 74, 83)( 84, 87)( 85, 88)( 86, 89)( 93,105)
( 94,106)( 95,107)( 96,102)( 97,103)( 98,104)( 99,108)(100,109)(101,110);;
s3 := (  3, 12)(  4, 14)(  5, 13)(  6, 16)(  7, 15)(  8, 17)(  9, 20)( 10, 19)
( 11, 18)( 22, 23)( 24, 25)( 27, 29)( 30, 39)( 31, 41)( 32, 40)( 33, 43)
( 34, 42)( 35, 44)( 36, 47)( 37, 46)( 38, 45)( 49, 50)( 51, 52)( 54, 56)
( 57, 93)( 58, 95)( 59, 94)( 60, 97)( 61, 96)( 62, 98)( 63,101)( 64,100)
( 65, 99)( 66, 84)( 67, 86)( 68, 85)( 69, 88)( 70, 87)( 71, 89)( 72, 92)
( 73, 91)( 74, 90)( 75,102)( 76,104)( 77,103)( 78,106)( 79,105)( 80,107)
( 81,110)( 82,109)( 83,108);;
s4 := (  3, 57)(  4, 58)(  5, 59)(  6, 60)(  7, 61)(  8, 62)(  9, 63)( 10, 64)
( 11, 65)( 12, 66)( 13, 67)( 14, 68)( 15, 69)( 16, 70)( 17, 71)( 18, 72)
( 19, 73)( 20, 74)( 21, 75)( 22, 76)( 23, 77)( 24, 78)( 25, 79)( 26, 80)
( 27, 81)( 28, 82)( 29, 83)( 30, 84)( 31, 85)( 32, 86)( 33, 87)( 34, 88)
( 35, 89)( 36, 90)( 37, 91)( 38, 92)( 39, 93)( 40, 94)( 41, 95)( 42, 96)
( 43, 97)( 44, 98)( 45, 99)( 46,100)( 47,101)( 48,102)( 49,103)( 50,104)
( 51,105)( 52,106)( 53,107)( 54,108)( 55,109)( 56,110);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s3*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(110)!(1,2);
s1 := Sym(110)!(  4,  5)(  6,  9)(  7, 11)(  8, 10)( 13, 14)( 15, 18)( 16, 20)
( 17, 19)( 22, 23)( 24, 27)( 25, 29)( 26, 28)( 31, 32)( 33, 36)( 34, 38)
( 35, 37)( 40, 41)( 42, 45)( 43, 47)( 44, 46)( 49, 50)( 51, 54)( 52, 56)
( 53, 55)( 58, 59)( 60, 63)( 61, 65)( 62, 64)( 67, 68)( 69, 72)( 70, 74)
( 71, 73)( 76, 77)( 78, 81)( 79, 83)( 80, 82)( 85, 86)( 87, 90)( 88, 92)
( 89, 91)( 94, 95)( 96, 99)( 97,101)( 98,100)(103,104)(105,108)(106,110)
(107,109);
s2 := Sym(110)!(  3,  6)(  4,  7)(  5,  8)( 12, 24)( 13, 25)( 14, 26)( 15, 21)
( 16, 22)( 17, 23)( 18, 27)( 19, 28)( 20, 29)( 30, 33)( 31, 34)( 32, 35)
( 39, 51)( 40, 52)( 41, 53)( 42, 48)( 43, 49)( 44, 50)( 45, 54)( 46, 55)
( 47, 56)( 57, 60)( 58, 61)( 59, 62)( 66, 78)( 67, 79)( 68, 80)( 69, 75)
( 70, 76)( 71, 77)( 72, 81)( 73, 82)( 74, 83)( 84, 87)( 85, 88)( 86, 89)
( 93,105)( 94,106)( 95,107)( 96,102)( 97,103)( 98,104)( 99,108)(100,109)
(101,110);
s3 := Sym(110)!(  3, 12)(  4, 14)(  5, 13)(  6, 16)(  7, 15)(  8, 17)(  9, 20)
( 10, 19)( 11, 18)( 22, 23)( 24, 25)( 27, 29)( 30, 39)( 31, 41)( 32, 40)
( 33, 43)( 34, 42)( 35, 44)( 36, 47)( 37, 46)( 38, 45)( 49, 50)( 51, 52)
( 54, 56)( 57, 93)( 58, 95)( 59, 94)( 60, 97)( 61, 96)( 62, 98)( 63,101)
( 64,100)( 65, 99)( 66, 84)( 67, 86)( 68, 85)( 69, 88)( 70, 87)( 71, 89)
( 72, 92)( 73, 91)( 74, 90)( 75,102)( 76,104)( 77,103)( 78,106)( 79,105)
( 80,107)( 81,110)( 82,109)( 83,108);
s4 := Sym(110)!(  3, 57)(  4, 58)(  5, 59)(  6, 60)(  7, 61)(  8, 62)(  9, 63)
( 10, 64)( 11, 65)( 12, 66)( 13, 67)( 14, 68)( 15, 69)( 16, 70)( 17, 71)
( 18, 72)( 19, 73)( 20, 74)( 21, 75)( 22, 76)( 23, 77)( 24, 78)( 25, 79)
( 26, 80)( 27, 81)( 28, 82)( 29, 83)( 30, 84)( 31, 85)( 32, 86)( 33, 87)
( 34, 88)( 35, 89)( 36, 90)( 37, 91)( 38, 92)( 39, 93)( 40, 94)( 41, 95)
( 42, 96)( 43, 97)( 44, 98)( 45, 99)( 46,100)( 47,101)( 48,102)( 49,103)
( 50,104)( 51,105)( 52,106)( 53,107)( 54,108)( 55,109)( 56,110);
poly := sub<Sym(110)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s2*s3*s4*s3*s2*s3*s4*s3, 
s3*s4*s3*s4*s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s3*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s1*s2 >; 
 

to this polytope