include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,3,6,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,3,6,4}*1728a
if this polytope has a name.
Group : SmallGroup(1728,30882)
Rank : 6
Schlafli Type : {2,2,3,6,4}
Number of vertices, edges, etc : 2, 2, 9, 27, 36, 4
Order of s0s1s2s3s4s5 : 12
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,3,6,2}*864
3-fold quotients : {2,2,3,6,4}*576
6-fold quotients : {2,2,3,6,2}*288
9-fold quotients : {2,2,3,2,4}*192
18-fold quotients : {2,2,3,2,2}*96
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 8, 11)( 9, 12)( 10, 13)( 14, 23)( 15, 24)( 16, 25)( 17, 29)( 18, 30)
( 19, 31)( 20, 26)( 21, 27)( 22, 28)( 35, 38)( 36, 39)( 37, 40)( 41, 50)
( 42, 51)( 43, 52)( 44, 56)( 45, 57)( 46, 58)( 47, 53)( 48, 54)( 49, 55)
( 62, 65)( 63, 66)( 64, 67)( 68, 77)( 69, 78)( 70, 79)( 71, 83)( 72, 84)
( 73, 85)( 74, 80)( 75, 81)( 76, 82)( 89, 92)( 90, 93)( 91, 94)( 95,104)
( 96,105)( 97,106)( 98,110)( 99,111)(100,112)(101,107)(102,108)(103,109);;
s3 := ( 5, 27)( 6, 28)( 7, 26)( 8, 25)( 9, 23)( 10, 24)( 11, 29)( 12, 30)
( 13, 31)( 14, 18)( 15, 19)( 16, 17)( 32, 54)( 33, 55)( 34, 53)( 35, 52)
( 36, 50)( 37, 51)( 38, 56)( 39, 57)( 40, 58)( 41, 45)( 42, 46)( 43, 44)
( 59, 81)( 60, 82)( 61, 80)( 62, 79)( 63, 77)( 64, 78)( 65, 83)( 66, 84)
( 67, 85)( 68, 72)( 69, 73)( 70, 71)( 86,108)( 87,109)( 88,107)( 89,106)
( 90,104)( 91,105)( 92,110)( 93,111)( 94,112)( 95, 99)( 96,100)( 97, 98);;
s4 := ( 6, 7)( 8, 11)( 9, 13)( 10, 12)( 15, 16)( 17, 20)( 18, 22)( 19, 21)
( 24, 25)( 26, 29)( 27, 31)( 28, 30)( 33, 34)( 35, 38)( 36, 40)( 37, 39)
( 42, 43)( 44, 47)( 45, 49)( 46, 48)( 51, 52)( 53, 56)( 54, 58)( 55, 57)
( 59, 86)( 60, 88)( 61, 87)( 62, 92)( 63, 94)( 64, 93)( 65, 89)( 66, 91)
( 67, 90)( 68, 95)( 69, 97)( 70, 96)( 71,101)( 72,103)( 73,102)( 74, 98)
( 75,100)( 76, 99)( 77,104)( 78,106)( 79,105)( 80,110)( 81,112)( 82,111)
( 83,107)( 84,109)( 85,108);;
s5 := ( 5, 59)( 6, 60)( 7, 61)( 8, 62)( 9, 63)( 10, 64)( 11, 65)( 12, 66)
( 13, 67)( 14, 68)( 15, 69)( 16, 70)( 17, 71)( 18, 72)( 19, 73)( 20, 74)
( 21, 75)( 22, 76)( 23, 77)( 24, 78)( 25, 79)( 26, 80)( 27, 81)( 28, 82)
( 29, 83)( 30, 84)( 31, 85)( 32, 86)( 33, 87)( 34, 88)( 35, 89)( 36, 90)
( 37, 91)( 38, 92)( 39, 93)( 40, 94)( 41, 95)( 42, 96)( 43, 97)( 44, 98)
( 45, 99)( 46,100)( 47,101)( 48,102)( 49,103)( 50,104)( 51,105)( 52,106)
( 53,107)( 54,108)( 55,109)( 56,110)( 57,111)( 58,112);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s2*s3*s2*s3*s2*s3, s3*s4*s5*s4*s3*s4*s5*s4,
s4*s5*s4*s5*s4*s5*s4*s5, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(112)!(1,2);
s1 := Sym(112)!(3,4);
s2 := Sym(112)!( 8, 11)( 9, 12)( 10, 13)( 14, 23)( 15, 24)( 16, 25)( 17, 29)
( 18, 30)( 19, 31)( 20, 26)( 21, 27)( 22, 28)( 35, 38)( 36, 39)( 37, 40)
( 41, 50)( 42, 51)( 43, 52)( 44, 56)( 45, 57)( 46, 58)( 47, 53)( 48, 54)
( 49, 55)( 62, 65)( 63, 66)( 64, 67)( 68, 77)( 69, 78)( 70, 79)( 71, 83)
( 72, 84)( 73, 85)( 74, 80)( 75, 81)( 76, 82)( 89, 92)( 90, 93)( 91, 94)
( 95,104)( 96,105)( 97,106)( 98,110)( 99,111)(100,112)(101,107)(102,108)
(103,109);
s3 := Sym(112)!( 5, 27)( 6, 28)( 7, 26)( 8, 25)( 9, 23)( 10, 24)( 11, 29)
( 12, 30)( 13, 31)( 14, 18)( 15, 19)( 16, 17)( 32, 54)( 33, 55)( 34, 53)
( 35, 52)( 36, 50)( 37, 51)( 38, 56)( 39, 57)( 40, 58)( 41, 45)( 42, 46)
( 43, 44)( 59, 81)( 60, 82)( 61, 80)( 62, 79)( 63, 77)( 64, 78)( 65, 83)
( 66, 84)( 67, 85)( 68, 72)( 69, 73)( 70, 71)( 86,108)( 87,109)( 88,107)
( 89,106)( 90,104)( 91,105)( 92,110)( 93,111)( 94,112)( 95, 99)( 96,100)
( 97, 98);
s4 := Sym(112)!( 6, 7)( 8, 11)( 9, 13)( 10, 12)( 15, 16)( 17, 20)( 18, 22)
( 19, 21)( 24, 25)( 26, 29)( 27, 31)( 28, 30)( 33, 34)( 35, 38)( 36, 40)
( 37, 39)( 42, 43)( 44, 47)( 45, 49)( 46, 48)( 51, 52)( 53, 56)( 54, 58)
( 55, 57)( 59, 86)( 60, 88)( 61, 87)( 62, 92)( 63, 94)( 64, 93)( 65, 89)
( 66, 91)( 67, 90)( 68, 95)( 69, 97)( 70, 96)( 71,101)( 72,103)( 73,102)
( 74, 98)( 75,100)( 76, 99)( 77,104)( 78,106)( 79,105)( 80,110)( 81,112)
( 82,111)( 83,107)( 84,109)( 85,108);
s5 := Sym(112)!( 5, 59)( 6, 60)( 7, 61)( 8, 62)( 9, 63)( 10, 64)( 11, 65)
( 12, 66)( 13, 67)( 14, 68)( 15, 69)( 16, 70)( 17, 71)( 18, 72)( 19, 73)
( 20, 74)( 21, 75)( 22, 76)( 23, 77)( 24, 78)( 25, 79)( 26, 80)( 27, 81)
( 28, 82)( 29, 83)( 30, 84)( 31, 85)( 32, 86)( 33, 87)( 34, 88)( 35, 89)
( 36, 90)( 37, 91)( 38, 92)( 39, 93)( 40, 94)( 41, 95)( 42, 96)( 43, 97)
( 44, 98)( 45, 99)( 46,100)( 47,101)( 48,102)( 49,103)( 50,104)( 51,105)
( 52,106)( 53,107)( 54,108)( 55,109)( 56,110)( 57,111)( 58,112);
poly := sub<Sym(112)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s2*s3*s2*s3*s2*s3, s3*s4*s5*s4*s3*s4*s5*s4,
s4*s5*s4*s5*s4*s5*s4*s5, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3 >;
to this polytope