Polytope of Type {24,6,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {24,6,6}*1728g
if this polytope has a name.
Group : SmallGroup(1728,37593)
Rank : 4
Schlafli Type : {24,6,6}
Number of vertices, edges, etc : 24, 72, 18, 6
Order of s0s1s2s3 : 24
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {12,6,6}*864g
   3-fold quotients : {8,6,6}*576b, {24,6,2}*576c
   4-fold quotients : {6,6,6}*432f
   6-fold quotients : {4,6,6}*288b, {12,6,2}*288c
   8-fold quotients : {6,3,6}*216
   9-fold quotients : {8,6,2}*192
   12-fold quotients : {2,6,6}*144c, {6,6,2}*144b
   18-fold quotients : {4,6,2}*96a
   24-fold quotients : {2,3,6}*72, {6,3,2}*72
   27-fold quotients : {8,2,2}*64
   36-fold quotients : {2,6,2}*48
   54-fold quotients : {4,2,2}*32
   72-fold quotients : {2,3,2}*24
   108-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 10, 19)( 11, 20)( 12, 21)( 13, 22)( 14, 23)( 15, 24)( 16, 25)( 17, 26)
( 18, 27)( 37, 46)( 38, 47)( 39, 48)( 40, 49)( 41, 50)( 42, 51)( 43, 52)
( 44, 53)( 45, 54)( 55, 82)( 56, 83)( 57, 84)( 58, 85)( 59, 86)( 60, 87)
( 61, 88)( 62, 89)( 63, 90)( 64,100)( 65,101)( 66,102)( 67,103)( 68,104)
( 69,105)( 70,106)( 71,107)( 72,108)( 73, 91)( 74, 92)( 75, 93)( 76, 94)
( 77, 95)( 78, 96)( 79, 97)( 80, 98)( 81, 99)(109,163)(110,164)(111,165)
(112,166)(113,167)(114,168)(115,169)(116,170)(117,171)(118,181)(119,182)
(120,183)(121,184)(122,185)(123,186)(124,187)(125,188)(126,189)(127,172)
(128,173)(129,174)(130,175)(131,176)(132,177)(133,178)(134,179)(135,180)
(136,190)(137,191)(138,192)(139,193)(140,194)(141,195)(142,196)(143,197)
(144,198)(145,208)(146,209)(147,210)(148,211)(149,212)(150,213)(151,214)
(152,215)(153,216)(154,199)(155,200)(156,201)(157,202)(158,203)(159,204)
(160,205)(161,206)(162,207);;
s1 := (  1,118)(  2,120)(  3,119)(  4,124)(  5,126)(  6,125)(  7,121)(  8,123)
(  9,122)( 10,109)( 11,111)( 12,110)( 13,115)( 14,117)( 15,116)( 16,112)
( 17,114)( 18,113)( 19,127)( 20,129)( 21,128)( 22,133)( 23,135)( 24,134)
( 25,130)( 26,132)( 27,131)( 28,145)( 29,147)( 30,146)( 31,151)( 32,153)
( 33,152)( 34,148)( 35,150)( 36,149)( 37,136)( 38,138)( 39,137)( 40,142)
( 41,144)( 42,143)( 43,139)( 44,141)( 45,140)( 46,154)( 47,156)( 48,155)
( 49,160)( 50,162)( 51,161)( 52,157)( 53,159)( 54,158)( 55,199)( 56,201)
( 57,200)( 58,205)( 59,207)( 60,206)( 61,202)( 62,204)( 63,203)( 64,190)
( 65,192)( 66,191)( 67,196)( 68,198)( 69,197)( 70,193)( 71,195)( 72,194)
( 73,208)( 74,210)( 75,209)( 76,214)( 77,216)( 78,215)( 79,211)( 80,213)
( 81,212)( 82,172)( 83,174)( 84,173)( 85,178)( 86,180)( 87,179)( 88,175)
( 89,177)( 90,176)( 91,163)( 92,165)( 93,164)( 94,169)( 95,171)( 96,170)
( 97,166)( 98,168)( 99,167)(100,181)(101,183)(102,182)(103,187)(104,189)
(105,188)(106,184)(107,186)(108,185);;
s2 := (  1,  5)(  2,  4)(  3,  6)(  7,  8)( 10, 23)( 11, 22)( 12, 24)( 13, 20)
( 14, 19)( 15, 21)( 16, 26)( 17, 25)( 18, 27)( 28, 32)( 29, 31)( 30, 33)
( 34, 35)( 37, 50)( 38, 49)( 39, 51)( 40, 47)( 41, 46)( 42, 48)( 43, 53)
( 44, 52)( 45, 54)( 55, 59)( 56, 58)( 57, 60)( 61, 62)( 64, 77)( 65, 76)
( 66, 78)( 67, 74)( 68, 73)( 69, 75)( 70, 80)( 71, 79)( 72, 81)( 82, 86)
( 83, 85)( 84, 87)( 88, 89)( 91,104)( 92,103)( 93,105)( 94,101)( 95,100)
( 96,102)( 97,107)( 98,106)( 99,108)(109,113)(110,112)(111,114)(115,116)
(118,131)(119,130)(120,132)(121,128)(122,127)(123,129)(124,134)(125,133)
(126,135)(136,140)(137,139)(138,141)(142,143)(145,158)(146,157)(147,159)
(148,155)(149,154)(150,156)(151,161)(152,160)(153,162)(163,167)(164,166)
(165,168)(169,170)(172,185)(173,184)(174,186)(175,182)(176,181)(177,183)
(178,188)(179,187)(180,189)(190,194)(191,193)(192,195)(196,197)(199,212)
(200,211)(201,213)(202,209)(203,208)(204,210)(205,215)(206,214)(207,216);;
s3 := (  4,  7)(  5,  8)(  6,  9)( 13, 16)( 14, 17)( 15, 18)( 22, 25)( 23, 26)
( 24, 27)( 31, 34)( 32, 35)( 33, 36)( 40, 43)( 41, 44)( 42, 45)( 49, 52)
( 50, 53)( 51, 54)( 58, 61)( 59, 62)( 60, 63)( 67, 70)( 68, 71)( 69, 72)
( 76, 79)( 77, 80)( 78, 81)( 85, 88)( 86, 89)( 87, 90)( 94, 97)( 95, 98)
( 96, 99)(103,106)(104,107)(105,108)(112,115)(113,116)(114,117)(121,124)
(122,125)(123,126)(130,133)(131,134)(132,135)(139,142)(140,143)(141,144)
(148,151)(149,152)(150,153)(157,160)(158,161)(159,162)(166,169)(167,170)
(168,171)(175,178)(176,179)(177,180)(184,187)(185,188)(186,189)(193,196)
(194,197)(195,198)(202,205)(203,206)(204,207)(211,214)(212,215)(213,216);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(216)!( 10, 19)( 11, 20)( 12, 21)( 13, 22)( 14, 23)( 15, 24)( 16, 25)
( 17, 26)( 18, 27)( 37, 46)( 38, 47)( 39, 48)( 40, 49)( 41, 50)( 42, 51)
( 43, 52)( 44, 53)( 45, 54)( 55, 82)( 56, 83)( 57, 84)( 58, 85)( 59, 86)
( 60, 87)( 61, 88)( 62, 89)( 63, 90)( 64,100)( 65,101)( 66,102)( 67,103)
( 68,104)( 69,105)( 70,106)( 71,107)( 72,108)( 73, 91)( 74, 92)( 75, 93)
( 76, 94)( 77, 95)( 78, 96)( 79, 97)( 80, 98)( 81, 99)(109,163)(110,164)
(111,165)(112,166)(113,167)(114,168)(115,169)(116,170)(117,171)(118,181)
(119,182)(120,183)(121,184)(122,185)(123,186)(124,187)(125,188)(126,189)
(127,172)(128,173)(129,174)(130,175)(131,176)(132,177)(133,178)(134,179)
(135,180)(136,190)(137,191)(138,192)(139,193)(140,194)(141,195)(142,196)
(143,197)(144,198)(145,208)(146,209)(147,210)(148,211)(149,212)(150,213)
(151,214)(152,215)(153,216)(154,199)(155,200)(156,201)(157,202)(158,203)
(159,204)(160,205)(161,206)(162,207);
s1 := Sym(216)!(  1,118)(  2,120)(  3,119)(  4,124)(  5,126)(  6,125)(  7,121)
(  8,123)(  9,122)( 10,109)( 11,111)( 12,110)( 13,115)( 14,117)( 15,116)
( 16,112)( 17,114)( 18,113)( 19,127)( 20,129)( 21,128)( 22,133)( 23,135)
( 24,134)( 25,130)( 26,132)( 27,131)( 28,145)( 29,147)( 30,146)( 31,151)
( 32,153)( 33,152)( 34,148)( 35,150)( 36,149)( 37,136)( 38,138)( 39,137)
( 40,142)( 41,144)( 42,143)( 43,139)( 44,141)( 45,140)( 46,154)( 47,156)
( 48,155)( 49,160)( 50,162)( 51,161)( 52,157)( 53,159)( 54,158)( 55,199)
( 56,201)( 57,200)( 58,205)( 59,207)( 60,206)( 61,202)( 62,204)( 63,203)
( 64,190)( 65,192)( 66,191)( 67,196)( 68,198)( 69,197)( 70,193)( 71,195)
( 72,194)( 73,208)( 74,210)( 75,209)( 76,214)( 77,216)( 78,215)( 79,211)
( 80,213)( 81,212)( 82,172)( 83,174)( 84,173)( 85,178)( 86,180)( 87,179)
( 88,175)( 89,177)( 90,176)( 91,163)( 92,165)( 93,164)( 94,169)( 95,171)
( 96,170)( 97,166)( 98,168)( 99,167)(100,181)(101,183)(102,182)(103,187)
(104,189)(105,188)(106,184)(107,186)(108,185);
s2 := Sym(216)!(  1,  5)(  2,  4)(  3,  6)(  7,  8)( 10, 23)( 11, 22)( 12, 24)
( 13, 20)( 14, 19)( 15, 21)( 16, 26)( 17, 25)( 18, 27)( 28, 32)( 29, 31)
( 30, 33)( 34, 35)( 37, 50)( 38, 49)( 39, 51)( 40, 47)( 41, 46)( 42, 48)
( 43, 53)( 44, 52)( 45, 54)( 55, 59)( 56, 58)( 57, 60)( 61, 62)( 64, 77)
( 65, 76)( 66, 78)( 67, 74)( 68, 73)( 69, 75)( 70, 80)( 71, 79)( 72, 81)
( 82, 86)( 83, 85)( 84, 87)( 88, 89)( 91,104)( 92,103)( 93,105)( 94,101)
( 95,100)( 96,102)( 97,107)( 98,106)( 99,108)(109,113)(110,112)(111,114)
(115,116)(118,131)(119,130)(120,132)(121,128)(122,127)(123,129)(124,134)
(125,133)(126,135)(136,140)(137,139)(138,141)(142,143)(145,158)(146,157)
(147,159)(148,155)(149,154)(150,156)(151,161)(152,160)(153,162)(163,167)
(164,166)(165,168)(169,170)(172,185)(173,184)(174,186)(175,182)(176,181)
(177,183)(178,188)(179,187)(180,189)(190,194)(191,193)(192,195)(196,197)
(199,212)(200,211)(201,213)(202,209)(203,208)(204,210)(205,215)(206,214)
(207,216);
s3 := Sym(216)!(  4,  7)(  5,  8)(  6,  9)( 13, 16)( 14, 17)( 15, 18)( 22, 25)
( 23, 26)( 24, 27)( 31, 34)( 32, 35)( 33, 36)( 40, 43)( 41, 44)( 42, 45)
( 49, 52)( 50, 53)( 51, 54)( 58, 61)( 59, 62)( 60, 63)( 67, 70)( 68, 71)
( 69, 72)( 76, 79)( 77, 80)( 78, 81)( 85, 88)( 86, 89)( 87, 90)( 94, 97)
( 95, 98)( 96, 99)(103,106)(104,107)(105,108)(112,115)(113,116)(114,117)
(121,124)(122,125)(123,126)(130,133)(131,134)(132,135)(139,142)(140,143)
(141,144)(148,151)(149,152)(150,153)(157,160)(158,161)(159,162)(166,169)
(167,170)(168,171)(175,178)(176,179)(177,180)(184,187)(185,188)(186,189)
(193,196)(194,197)(195,198)(202,205)(203,206)(204,207)(211,214)(212,215)
(213,216);
poly := sub<Sym(216)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope