Polytope of Type {6,24,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,24,6}*1728g
if this polytope has a name.
Group : SmallGroup(1728,37593)
Rank : 4
Schlafli Type : {6,24,6}
Number of vertices, edges, etc : 6, 72, 72, 6
Order of s0s1s2s3 : 24
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,12,6}*864f
   3-fold quotients : {6,8,6}*576, {6,24,2}*576c
   4-fold quotients : {6,6,6}*432g
   6-fold quotients : {6,4,6}*288, {6,12,2}*288c
   8-fold quotients : {3,6,6}*216b
   9-fold quotients : {2,8,6}*192, {6,8,2}*192
   12-fold quotients : {6,2,6}*144, {6,6,2}*144c
   18-fold quotients : {2,4,6}*96a, {6,4,2}*96a
   24-fold quotients : {3,2,6}*72, {3,6,2}*72, {6,2,3}*72
   27-fold quotients : {2,8,2}*64
   36-fold quotients : {2,2,6}*48, {6,2,2}*48
   48-fold quotients : {3,2,3}*36
   54-fold quotients : {2,4,2}*32
   72-fold quotients : {2,2,3}*24, {3,2,2}*24
   108-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  3)(  5,  6)(  8,  9)( 10, 19)( 11, 21)( 12, 20)( 13, 22)( 14, 24)
( 15, 23)( 16, 25)( 17, 27)( 18, 26)( 29, 30)( 32, 33)( 35, 36)( 37, 46)
( 38, 48)( 39, 47)( 40, 49)( 41, 51)( 42, 50)( 43, 52)( 44, 54)( 45, 53)
( 56, 57)( 59, 60)( 62, 63)( 64, 73)( 65, 75)( 66, 74)( 67, 76)( 68, 78)
( 69, 77)( 70, 79)( 71, 81)( 72, 80)( 83, 84)( 86, 87)( 89, 90)( 91,100)
( 92,102)( 93,101)( 94,103)( 95,105)( 96,104)( 97,106)( 98,108)( 99,107)
(110,111)(113,114)(116,117)(118,127)(119,129)(120,128)(121,130)(122,132)
(123,131)(124,133)(125,135)(126,134)(137,138)(140,141)(143,144)(145,154)
(146,156)(147,155)(148,157)(149,159)(150,158)(151,160)(152,162)(153,161)
(164,165)(167,168)(170,171)(172,181)(173,183)(174,182)(175,184)(176,186)
(177,185)(178,187)(179,189)(180,188)(191,192)(194,195)(197,198)(199,208)
(200,210)(201,209)(202,211)(203,213)(204,212)(205,214)(206,216)(207,215);;
s1 := (  1,119)(  2,118)(  3,120)(  4,122)(  5,121)(  6,123)(  7,125)(  8,124)
(  9,126)( 10,110)( 11,109)( 12,111)( 13,113)( 14,112)( 15,114)( 16,116)
( 17,115)( 18,117)( 19,128)( 20,127)( 21,129)( 22,131)( 23,130)( 24,132)
( 25,134)( 26,133)( 27,135)( 28,146)( 29,145)( 30,147)( 31,149)( 32,148)
( 33,150)( 34,152)( 35,151)( 36,153)( 37,137)( 38,136)( 39,138)( 40,140)
( 41,139)( 42,141)( 43,143)( 44,142)( 45,144)( 46,155)( 47,154)( 48,156)
( 49,158)( 50,157)( 51,159)( 52,161)( 53,160)( 54,162)( 55,200)( 56,199)
( 57,201)( 58,203)( 59,202)( 60,204)( 61,206)( 62,205)( 63,207)( 64,191)
( 65,190)( 66,192)( 67,194)( 68,193)( 69,195)( 70,197)( 71,196)( 72,198)
( 73,209)( 74,208)( 75,210)( 76,212)( 77,211)( 78,213)( 79,215)( 80,214)
( 81,216)( 82,173)( 83,172)( 84,174)( 85,176)( 86,175)( 87,177)( 88,179)
( 89,178)( 90,180)( 91,164)( 92,163)( 93,165)( 94,167)( 95,166)( 96,168)
( 97,170)( 98,169)( 99,171)(100,182)(101,181)(102,183)(103,185)(104,184)
(105,186)(106,188)(107,187)(108,189);;
s2 := (  4,  7)(  5,  8)(  6,  9)( 10, 19)( 11, 20)( 12, 21)( 13, 25)( 14, 26)
( 15, 27)( 16, 22)( 17, 23)( 18, 24)( 31, 34)( 32, 35)( 33, 36)( 37, 46)
( 38, 47)( 39, 48)( 40, 52)( 41, 53)( 42, 54)( 43, 49)( 44, 50)( 45, 51)
( 55, 82)( 56, 83)( 57, 84)( 58, 88)( 59, 89)( 60, 90)( 61, 85)( 62, 86)
( 63, 87)( 64,100)( 65,101)( 66,102)( 67,106)( 68,107)( 69,108)( 70,103)
( 71,104)( 72,105)( 73, 91)( 74, 92)( 75, 93)( 76, 97)( 77, 98)( 78, 99)
( 79, 94)( 80, 95)( 81, 96)(109,163)(110,164)(111,165)(112,169)(113,170)
(114,171)(115,166)(116,167)(117,168)(118,181)(119,182)(120,183)(121,187)
(122,188)(123,189)(124,184)(125,185)(126,186)(127,172)(128,173)(129,174)
(130,178)(131,179)(132,180)(133,175)(134,176)(135,177)(136,190)(137,191)
(138,192)(139,196)(140,197)(141,198)(142,193)(143,194)(144,195)(145,208)
(146,209)(147,210)(148,214)(149,215)(150,216)(151,211)(152,212)(153,213)
(154,199)(155,200)(156,201)(157,205)(158,206)(159,207)(160,202)(161,203)
(162,204);;
s3 := (  1,  4)(  2,  5)(  3,  6)( 10, 13)( 11, 14)( 12, 15)( 19, 22)( 20, 23)
( 21, 24)( 28, 31)( 29, 32)( 30, 33)( 37, 40)( 38, 41)( 39, 42)( 46, 49)
( 47, 50)( 48, 51)( 55, 58)( 56, 59)( 57, 60)( 64, 67)( 65, 68)( 66, 69)
( 73, 76)( 74, 77)( 75, 78)( 82, 85)( 83, 86)( 84, 87)( 91, 94)( 92, 95)
( 93, 96)(100,103)(101,104)(102,105)(109,112)(110,113)(111,114)(118,121)
(119,122)(120,123)(127,130)(128,131)(129,132)(136,139)(137,140)(138,141)
(145,148)(146,149)(147,150)(154,157)(155,158)(156,159)(163,166)(164,167)
(165,168)(172,175)(173,176)(174,177)(181,184)(182,185)(183,186)(190,193)
(191,194)(192,195)(199,202)(200,203)(201,204)(208,211)(209,212)(210,213);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s1*s2*s3*s2*s1*s2*s3*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(216)!(  2,  3)(  5,  6)(  8,  9)( 10, 19)( 11, 21)( 12, 20)( 13, 22)
( 14, 24)( 15, 23)( 16, 25)( 17, 27)( 18, 26)( 29, 30)( 32, 33)( 35, 36)
( 37, 46)( 38, 48)( 39, 47)( 40, 49)( 41, 51)( 42, 50)( 43, 52)( 44, 54)
( 45, 53)( 56, 57)( 59, 60)( 62, 63)( 64, 73)( 65, 75)( 66, 74)( 67, 76)
( 68, 78)( 69, 77)( 70, 79)( 71, 81)( 72, 80)( 83, 84)( 86, 87)( 89, 90)
( 91,100)( 92,102)( 93,101)( 94,103)( 95,105)( 96,104)( 97,106)( 98,108)
( 99,107)(110,111)(113,114)(116,117)(118,127)(119,129)(120,128)(121,130)
(122,132)(123,131)(124,133)(125,135)(126,134)(137,138)(140,141)(143,144)
(145,154)(146,156)(147,155)(148,157)(149,159)(150,158)(151,160)(152,162)
(153,161)(164,165)(167,168)(170,171)(172,181)(173,183)(174,182)(175,184)
(176,186)(177,185)(178,187)(179,189)(180,188)(191,192)(194,195)(197,198)
(199,208)(200,210)(201,209)(202,211)(203,213)(204,212)(205,214)(206,216)
(207,215);
s1 := Sym(216)!(  1,119)(  2,118)(  3,120)(  4,122)(  5,121)(  6,123)(  7,125)
(  8,124)(  9,126)( 10,110)( 11,109)( 12,111)( 13,113)( 14,112)( 15,114)
( 16,116)( 17,115)( 18,117)( 19,128)( 20,127)( 21,129)( 22,131)( 23,130)
( 24,132)( 25,134)( 26,133)( 27,135)( 28,146)( 29,145)( 30,147)( 31,149)
( 32,148)( 33,150)( 34,152)( 35,151)( 36,153)( 37,137)( 38,136)( 39,138)
( 40,140)( 41,139)( 42,141)( 43,143)( 44,142)( 45,144)( 46,155)( 47,154)
( 48,156)( 49,158)( 50,157)( 51,159)( 52,161)( 53,160)( 54,162)( 55,200)
( 56,199)( 57,201)( 58,203)( 59,202)( 60,204)( 61,206)( 62,205)( 63,207)
( 64,191)( 65,190)( 66,192)( 67,194)( 68,193)( 69,195)( 70,197)( 71,196)
( 72,198)( 73,209)( 74,208)( 75,210)( 76,212)( 77,211)( 78,213)( 79,215)
( 80,214)( 81,216)( 82,173)( 83,172)( 84,174)( 85,176)( 86,175)( 87,177)
( 88,179)( 89,178)( 90,180)( 91,164)( 92,163)( 93,165)( 94,167)( 95,166)
( 96,168)( 97,170)( 98,169)( 99,171)(100,182)(101,181)(102,183)(103,185)
(104,184)(105,186)(106,188)(107,187)(108,189);
s2 := Sym(216)!(  4,  7)(  5,  8)(  6,  9)( 10, 19)( 11, 20)( 12, 21)( 13, 25)
( 14, 26)( 15, 27)( 16, 22)( 17, 23)( 18, 24)( 31, 34)( 32, 35)( 33, 36)
( 37, 46)( 38, 47)( 39, 48)( 40, 52)( 41, 53)( 42, 54)( 43, 49)( 44, 50)
( 45, 51)( 55, 82)( 56, 83)( 57, 84)( 58, 88)( 59, 89)( 60, 90)( 61, 85)
( 62, 86)( 63, 87)( 64,100)( 65,101)( 66,102)( 67,106)( 68,107)( 69,108)
( 70,103)( 71,104)( 72,105)( 73, 91)( 74, 92)( 75, 93)( 76, 97)( 77, 98)
( 78, 99)( 79, 94)( 80, 95)( 81, 96)(109,163)(110,164)(111,165)(112,169)
(113,170)(114,171)(115,166)(116,167)(117,168)(118,181)(119,182)(120,183)
(121,187)(122,188)(123,189)(124,184)(125,185)(126,186)(127,172)(128,173)
(129,174)(130,178)(131,179)(132,180)(133,175)(134,176)(135,177)(136,190)
(137,191)(138,192)(139,196)(140,197)(141,198)(142,193)(143,194)(144,195)
(145,208)(146,209)(147,210)(148,214)(149,215)(150,216)(151,211)(152,212)
(153,213)(154,199)(155,200)(156,201)(157,205)(158,206)(159,207)(160,202)
(161,203)(162,204);
s3 := Sym(216)!(  1,  4)(  2,  5)(  3,  6)( 10, 13)( 11, 14)( 12, 15)( 19, 22)
( 20, 23)( 21, 24)( 28, 31)( 29, 32)( 30, 33)( 37, 40)( 38, 41)( 39, 42)
( 46, 49)( 47, 50)( 48, 51)( 55, 58)( 56, 59)( 57, 60)( 64, 67)( 65, 68)
( 66, 69)( 73, 76)( 74, 77)( 75, 78)( 82, 85)( 83, 86)( 84, 87)( 91, 94)
( 92, 95)( 93, 96)(100,103)(101,104)(102,105)(109,112)(110,113)(111,114)
(118,121)(119,122)(120,123)(127,130)(128,131)(129,132)(136,139)(137,140)
(138,141)(145,148)(146,149)(147,150)(154,157)(155,158)(156,159)(163,166)
(164,167)(165,168)(172,175)(173,176)(174,177)(181,184)(182,185)(183,186)
(190,193)(191,194)(192,195)(199,202)(200,203)(201,204)(208,211)(209,212)
(210,213);
poly := sub<Sym(216)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s3*s2*s1*s2*s3*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1 >; 
 
References : None.
to this polytope