Polytope of Type {6,24,2,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,24,2,3}*1728c
if this polytope has a name.
Group : SmallGroup(1728,37593)
Rank : 5
Schlafli Type : {6,24,2,3}
Number of vertices, edges, etc : 6, 72, 24, 3, 3
Order of s0s1s2s3s4 : 24
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,12,2,3}*864c
   3-fold quotients : {6,8,2,3}*576
   4-fold quotients : {6,6,2,3}*432c
   6-fold quotients : {6,4,2,3}*288a
   8-fold quotients : {3,6,2,3}*216
   9-fold quotients : {2,8,2,3}*192
   12-fold quotients : {6,2,2,3}*144
   18-fold quotients : {2,4,2,3}*96
   24-fold quotients : {3,2,2,3}*72
   36-fold quotients : {2,2,2,3}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)(11,12)(13,16)(14,18)(15,17)(20,21)(22,25)
(23,27)(24,26)(29,30)(31,34)(32,36)(33,35)(38,39)(40,43)(41,45)(42,44)(47,48)
(49,52)(50,54)(51,53)(56,57)(58,61)(59,63)(60,62)(65,66)(67,70)(68,72)
(69,71);;
s1 := ( 1,41)( 2,40)( 3,42)( 4,38)( 5,37)( 6,39)( 7,44)( 8,43)( 9,45)(10,50)
(11,49)(12,51)(13,47)(14,46)(15,48)(16,53)(17,52)(18,54)(19,68)(20,67)(21,69)
(22,65)(23,64)(24,66)(25,71)(26,70)(27,72)(28,59)(29,58)(30,60)(31,56)(32,55)
(33,57)(34,62)(35,61)(36,63);;
s2 := ( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(19,28)(20,29)(21,30)(22,34)
(23,35)(24,36)(25,31)(26,32)(27,33)(37,55)(38,56)(39,57)(40,61)(41,62)(42,63)
(43,58)(44,59)(45,60)(46,64)(47,65)(48,66)(49,70)(50,71)(51,72)(52,67)(53,68)
(54,69);;
s3 := (74,75);;
s4 := (73,74);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(75)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)(11,12)(13,16)(14,18)(15,17)(20,21)
(22,25)(23,27)(24,26)(29,30)(31,34)(32,36)(33,35)(38,39)(40,43)(41,45)(42,44)
(47,48)(49,52)(50,54)(51,53)(56,57)(58,61)(59,63)(60,62)(65,66)(67,70)(68,72)
(69,71);
s1 := Sym(75)!( 1,41)( 2,40)( 3,42)( 4,38)( 5,37)( 6,39)( 7,44)( 8,43)( 9,45)
(10,50)(11,49)(12,51)(13,47)(14,46)(15,48)(16,53)(17,52)(18,54)(19,68)(20,67)
(21,69)(22,65)(23,64)(24,66)(25,71)(26,70)(27,72)(28,59)(29,58)(30,60)(31,56)
(32,55)(33,57)(34,62)(35,61)(36,63);
s2 := Sym(75)!( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(19,28)(20,29)(21,30)
(22,34)(23,35)(24,36)(25,31)(26,32)(27,33)(37,55)(38,56)(39,57)(40,61)(41,62)
(42,63)(43,58)(44,59)(45,60)(46,64)(47,65)(48,66)(49,70)(50,71)(51,72)(52,67)
(53,68)(54,69);
s3 := Sym(75)!(74,75);
s4 := Sym(75)!(73,74);
poly := sub<Sym(75)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1 >; 
 

to this polytope