include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {8,6,3,2,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,6,3,2,3}*1728
if this polytope has a name.
Group : SmallGroup(1728,37593)
Rank : 6
Schlafli Type : {8,6,3,2,3}
Number of vertices, edges, etc : 8, 24, 9, 3, 3, 3
Order of s0s1s2s3s4s5 : 24
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,6,3,2,3}*864
3-fold quotients : {8,2,3,2,3}*576
4-fold quotients : {2,6,3,2,3}*432
6-fold quotients : {4,2,3,2,3}*288
12-fold quotients : {2,2,3,2,3}*144
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,37)( 2,38)( 3,39)( 4,40)( 5,41)( 6,42)( 7,43)( 8,44)( 9,45)(10,46)
(11,47)(12,48)(13,49)(14,50)(15,51)(16,52)(17,53)(18,54)(19,64)(20,65)(21,66)
(22,67)(23,68)(24,69)(25,70)(26,71)(27,72)(28,55)(29,56)(30,57)(31,58)(32,59)
(33,60)(34,61)(35,62)(36,63);;
s1 := ( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(19,28)(20,29)(21,30)(22,34)
(23,35)(24,36)(25,31)(26,32)(27,33)(37,55)(38,56)(39,57)(40,61)(41,62)(42,63)
(43,58)(44,59)(45,60)(46,64)(47,65)(48,66)(49,70)(50,71)(51,72)(52,67)(53,68)
(54,69);;
s2 := ( 1, 4)( 2, 6)( 3, 5)( 8, 9)(10,13)(11,15)(12,14)(17,18)(19,22)(20,24)
(21,23)(26,27)(28,31)(29,33)(30,32)(35,36)(37,40)(38,42)(39,41)(44,45)(46,49)
(47,51)(48,50)(53,54)(55,58)(56,60)(57,59)(62,63)(64,67)(65,69)(66,68)
(71,72);;
s3 := ( 1, 2)( 4, 8)( 5, 7)( 6, 9)(10,11)(13,17)(14,16)(15,18)(19,20)(22,26)
(23,25)(24,27)(28,29)(31,35)(32,34)(33,36)(37,38)(40,44)(41,43)(42,45)(46,47)
(49,53)(50,52)(51,54)(55,56)(58,62)(59,61)(60,63)(64,65)(67,71)(68,70)
(69,72);;
s4 := (74,75);;
s5 := (73,74);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s2*s3*s2*s3*s2*s3,
s4*s5*s4*s5*s4*s5, s0*s1*s2*s1*s0*s1*s2*s1,
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(75)!( 1,37)( 2,38)( 3,39)( 4,40)( 5,41)( 6,42)( 7,43)( 8,44)( 9,45)
(10,46)(11,47)(12,48)(13,49)(14,50)(15,51)(16,52)(17,53)(18,54)(19,64)(20,65)
(21,66)(22,67)(23,68)(24,69)(25,70)(26,71)(27,72)(28,55)(29,56)(30,57)(31,58)
(32,59)(33,60)(34,61)(35,62)(36,63);
s1 := Sym(75)!( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(19,28)(20,29)(21,30)
(22,34)(23,35)(24,36)(25,31)(26,32)(27,33)(37,55)(38,56)(39,57)(40,61)(41,62)
(42,63)(43,58)(44,59)(45,60)(46,64)(47,65)(48,66)(49,70)(50,71)(51,72)(52,67)
(53,68)(54,69);
s2 := Sym(75)!( 1, 4)( 2, 6)( 3, 5)( 8, 9)(10,13)(11,15)(12,14)(17,18)(19,22)
(20,24)(21,23)(26,27)(28,31)(29,33)(30,32)(35,36)(37,40)(38,42)(39,41)(44,45)
(46,49)(47,51)(48,50)(53,54)(55,58)(56,60)(57,59)(62,63)(64,67)(65,69)(66,68)
(71,72);
s3 := Sym(75)!( 1, 2)( 4, 8)( 5, 7)( 6, 9)(10,11)(13,17)(14,16)(15,18)(19,20)
(22,26)(23,25)(24,27)(28,29)(31,35)(32,34)(33,36)(37,38)(40,44)(41,43)(42,45)
(46,47)(49,53)(50,52)(51,54)(55,56)(58,62)(59,61)(60,63)(64,65)(67,71)(68,70)
(69,72);
s4 := Sym(75)!(74,75);
s5 := Sym(75)!(73,74);
poly := sub<Sym(75)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s2*s3*s2*s3*s2*s3, s4*s5*s4*s5*s4*s5,
s0*s1*s2*s1*s0*s1*s2*s1, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope