Polytope of Type {6,9,2,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,9,2,2}*1728
if this polytope has a name.
Group : SmallGroup(1728,46114)
Rank : 5
Schlafli Type : {6,9,2,2}
Number of vertices, edges, etc : 24, 108, 36, 2, 2
Order of s0s1s2s3s4 : 36
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {6,3,2,2}*576
   4-fold quotients : {6,9,2,2}*432
   9-fold quotients : {6,3,2,2}*192
   12-fold quotients : {2,9,2,2}*144, {6,3,2,2}*144
   18-fold quotients : {3,3,2,2}*96
   36-fold quotients : {2,3,2,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 6, 7)(10,11)(14,15)(18,19)(22,23)(26,27)(30,31)(34,35);;
s1 := ( 3, 4)( 5, 9)( 6,10)( 7,12)( 8,11)(13,29)(14,30)(15,32)(16,31)(17,25)
(18,26)(19,28)(20,27)(21,33)(22,34)(23,36)(24,35);;
s2 := ( 1,16)( 2,14)( 3,15)( 4,13)( 5,24)( 6,22)( 7,23)( 8,21)( 9,20)(10,18)
(11,19)(12,17)(25,32)(26,30)(27,31)(28,29)(33,36);;
s3 := (37,38);;
s4 := (39,40);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(40)!( 2, 3)( 6, 7)(10,11)(14,15)(18,19)(22,23)(26,27)(30,31)(34,35);
s1 := Sym(40)!( 3, 4)( 5, 9)( 6,10)( 7,12)( 8,11)(13,29)(14,30)(15,32)(16,31)
(17,25)(18,26)(19,28)(20,27)(21,33)(22,34)(23,36)(24,35);
s2 := Sym(40)!( 1,16)( 2,14)( 3,15)( 4,13)( 5,24)( 6,22)( 7,23)( 8,21)( 9,20)
(10,18)(11,19)(12,17)(25,32)(26,30)(27,31)(28,29)(33,36);
s3 := Sym(40)!(37,38);
s4 := Sym(40)!(39,40);
poly := sub<Sym(40)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1 >; 
 

to this polytope