Polytope of Type {3,6,2,18}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,6,2,18}*1728
if this polytope has a name.
Group : SmallGroup(1728,46114)
Rank : 5
Schlafli Type : {3,6,2,18}
Number of vertices, edges, etc : 4, 12, 8, 18, 18
Order of s0s1s2s3s4 : 36
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,3,2,18}*864, {3,6,2,9}*864
   3-fold quotients : {3,6,2,6}*576
   4-fold quotients : {3,3,2,9}*432
   6-fold quotients : {3,3,2,6}*288, {3,6,2,3}*288
   9-fold quotients : {3,6,2,2}*192
   12-fold quotients : {3,3,2,3}*144
   18-fold quotients : {3,3,2,2}*96
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,4)(2,6);;
s1 := (3,4)(5,6);;
s2 := (1,4)(2,6)(3,5);;
s3 := ( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24);;
s4 := ( 7,11)( 8, 9)(10,15)(12,13)(14,19)(16,17)(18,23)(20,21)(22,24);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s1*s0*s1*s0*s1, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(24)!(1,4)(2,6);
s1 := Sym(24)!(3,4)(5,6);
s2 := Sym(24)!(1,4)(2,6)(3,5);
s3 := Sym(24)!( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24);
s4 := Sym(24)!( 7,11)( 8, 9)(10,15)(12,13)(14,19)(16,17)(18,23)(20,21)(22,24);
poly := sub<Sym(24)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope