Polytope of Type {2,2,3,2,4,9}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,3,2,4,9}*1728
if this polytope has a name.
Group : SmallGroup(1728,46115)
Rank : 7
Schlafli Type : {2,2,3,2,4,9}
Number of vertices, edges, etc : 2, 2, 3, 3, 4, 18, 9
Order of s0s1s2s3s4s5s6 : 18
Order of s0s1s2s3s4s5s6s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,2,3,2,4,3}*576
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (6,7);;
s3 := (5,6);;
s4 := ( 9,14)(10,16)(11,18)(12,20)(15,25)(17,27)(21,31)(28,37)(30,39)(32,40)
(34,41)(36,42);;
s5 := ( 8, 9)(10,13)(11,12)(14,22)(15,21)(16,23)(17,19)(18,20)(24,30)(25,31)
(26,28)(27,29)(32,38)(33,39)(34,36)(35,37)(40,43)(41,42);;
s6 := ( 8,13)( 9,11)(10,21)(12,17)(14,18)(15,30)(16,31)(19,26)(20,27)(22,23)
(24,38)(25,39)(28,34)(29,35)(32,36)(33,43)(37,41)(40,42);;
poly := Group([s0,s1,s2,s3,s4,s5,s6]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5","s6");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  s6 := F.7;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s6*s6, s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5, 
s3*s5*s3*s5, s0*s6*s0*s6, s1*s6*s1*s6, 
s2*s6*s2*s6, s3*s6*s3*s6, s4*s6*s4*s6, 
s2*s3*s2*s3*s2*s3, s4*s5*s4*s5*s4*s5*s4*s5, 
s4*s5*s6*s5*s4*s5*s6*s4*s5, s5*s6*s5*s6*s5*s6*s5*s6*s5*s6*s5*s6*s5*s6*s5*s6*s5*s6 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(43)!(1,2);
s1 := Sym(43)!(3,4);
s2 := Sym(43)!(6,7);
s3 := Sym(43)!(5,6);
s4 := Sym(43)!( 9,14)(10,16)(11,18)(12,20)(15,25)(17,27)(21,31)(28,37)(30,39)
(32,40)(34,41)(36,42);
s5 := Sym(43)!( 8, 9)(10,13)(11,12)(14,22)(15,21)(16,23)(17,19)(18,20)(24,30)
(25,31)(26,28)(27,29)(32,38)(33,39)(34,36)(35,37)(40,43)(41,42);
s6 := Sym(43)!( 8,13)( 9,11)(10,21)(12,17)(14,18)(15,30)(16,31)(19,26)(20,27)
(22,23)(24,38)(25,39)(28,34)(29,35)(32,36)(33,43)(37,41)(40,42);
poly := sub<Sym(43)|s0,s1,s2,s3,s4,s5,s6>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5,s6> := Group< s0,s1,s2,s3,s4,s5,s6 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s6*s6, s0*s1*s0*s1, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5, 
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5, 
s0*s6*s0*s6, s1*s6*s1*s6, s2*s6*s2*s6, 
s3*s6*s3*s6, s4*s6*s4*s6, s2*s3*s2*s3*s2*s3, 
s4*s5*s4*s5*s4*s5*s4*s5, s4*s5*s6*s5*s4*s5*s6*s4*s5, 
s5*s6*s5*s6*s5*s6*s5*s6*s5*s6*s5*s6*s5*s6*s5*s6*s5*s6 >; 
 

to this polytope