include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,9,4,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,9,4,2}*1728
if this polytope has a name.
Group : SmallGroup(1728,46115)
Rank : 5
Schlafli Type : {6,9,4,2}
Number of vertices, edges, etc : 6, 54, 36, 8, 2
Order of s0s1s2s3s4 : 18
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,9,4,2}*864
3-fold quotients : {2,9,4,2}*576, {6,3,4,2}*576
4-fold quotients : {6,9,2,2}*432
6-fold quotients : {2,9,4,2}*288, {6,3,4,2}*288
9-fold quotients : {2,3,4,2}*192
12-fold quotients : {2,9,2,2}*144, {6,3,2,2}*144
18-fold quotients : {2,3,4,2}*96
36-fold quotients : {2,3,2,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 13, 25)( 14, 26)( 15, 27)( 16, 28)( 17, 29)( 18, 30)( 19, 31)( 20, 32)
( 21, 33)( 22, 34)( 23, 35)( 24, 36)( 49, 61)( 50, 62)( 51, 63)( 52, 64)
( 53, 65)( 54, 66)( 55, 67)( 56, 68)( 57, 69)( 58, 70)( 59, 71)( 60, 72)
( 85, 97)( 86, 98)( 87, 99)( 88,100)( 89,101)( 90,102)( 91,103)( 92,104)
( 93,105)( 94,106)( 95,107)( 96,108)(121,133)(122,134)(123,135)(124,136)
(125,137)(126,138)(127,139)(128,140)(129,141)(130,142)(131,143)(132,144)
(157,169)(158,170)(159,171)(160,172)(161,173)(162,174)(163,175)(164,176)
(165,177)(166,178)(167,179)(168,180)(193,205)(194,206)(195,207)(196,208)
(197,209)(198,210)(199,211)(200,212)(201,213)(202,214)(203,215)(204,216);;
s1 := ( 1, 13)( 2, 15)( 3, 14)( 4, 16)( 5, 21)( 6, 23)( 7, 22)( 8, 24)
( 9, 17)( 10, 19)( 11, 18)( 12, 20)( 26, 27)( 29, 33)( 30, 35)( 31, 34)
( 32, 36)( 37, 89)( 38, 91)( 39, 90)( 40, 92)( 41, 85)( 42, 87)( 43, 86)
( 44, 88)( 45, 93)( 46, 95)( 47, 94)( 48, 96)( 49, 77)( 50, 79)( 51, 78)
( 52, 80)( 53, 73)( 54, 75)( 55, 74)( 56, 76)( 57, 81)( 58, 83)( 59, 82)
( 60, 84)( 61,101)( 62,103)( 63,102)( 64,104)( 65, 97)( 66, 99)( 67, 98)
( 68,100)( 69,105)( 70,107)( 71,106)( 72,108)(109,121)(110,123)(111,122)
(112,124)(113,129)(114,131)(115,130)(116,132)(117,125)(118,127)(119,126)
(120,128)(134,135)(137,141)(138,143)(139,142)(140,144)(145,197)(146,199)
(147,198)(148,200)(149,193)(150,195)(151,194)(152,196)(153,201)(154,203)
(155,202)(156,204)(157,185)(158,187)(159,186)(160,188)(161,181)(162,183)
(163,182)(164,184)(165,189)(166,191)(167,190)(168,192)(169,209)(170,211)
(171,210)(172,212)(173,205)(174,207)(175,206)(176,208)(177,213)(178,215)
(179,214)(180,216);;
s2 := ( 1, 37)( 2, 38)( 3, 40)( 4, 39)( 5, 45)( 6, 46)( 7, 48)( 8, 47)
( 9, 41)( 10, 42)( 11, 44)( 12, 43)( 13, 61)( 14, 62)( 15, 64)( 16, 63)
( 17, 69)( 18, 70)( 19, 72)( 20, 71)( 21, 65)( 22, 66)( 23, 68)( 24, 67)
( 25, 49)( 26, 50)( 27, 52)( 28, 51)( 29, 57)( 30, 58)( 31, 60)( 32, 59)
( 33, 53)( 34, 54)( 35, 56)( 36, 55)( 73, 77)( 74, 78)( 75, 80)( 76, 79)
( 83, 84)( 85,101)( 86,102)( 87,104)( 88,103)( 89, 97)( 90, 98)( 91,100)
( 92, 99)( 93,105)( 94,106)( 95,108)( 96,107)(109,145)(110,146)(111,148)
(112,147)(113,153)(114,154)(115,156)(116,155)(117,149)(118,150)(119,152)
(120,151)(121,169)(122,170)(123,172)(124,171)(125,177)(126,178)(127,180)
(128,179)(129,173)(130,174)(131,176)(132,175)(133,157)(134,158)(135,160)
(136,159)(137,165)(138,166)(139,168)(140,167)(141,161)(142,162)(143,164)
(144,163)(181,185)(182,186)(183,188)(184,187)(191,192)(193,209)(194,210)
(195,212)(196,211)(197,205)(198,206)(199,208)(200,207)(201,213)(202,214)
(203,216)(204,215);;
s3 := ( 1,112)( 2,111)( 3,110)( 4,109)( 5,116)( 6,115)( 7,114)( 8,113)
( 9,120)( 10,119)( 11,118)( 12,117)( 13,124)( 14,123)( 15,122)( 16,121)
( 17,128)( 18,127)( 19,126)( 20,125)( 21,132)( 22,131)( 23,130)( 24,129)
( 25,136)( 26,135)( 27,134)( 28,133)( 29,140)( 30,139)( 31,138)( 32,137)
( 33,144)( 34,143)( 35,142)( 36,141)( 37,148)( 38,147)( 39,146)( 40,145)
( 41,152)( 42,151)( 43,150)( 44,149)( 45,156)( 46,155)( 47,154)( 48,153)
( 49,160)( 50,159)( 51,158)( 52,157)( 53,164)( 54,163)( 55,162)( 56,161)
( 57,168)( 58,167)( 59,166)( 60,165)( 61,172)( 62,171)( 63,170)( 64,169)
( 65,176)( 66,175)( 67,174)( 68,173)( 69,180)( 70,179)( 71,178)( 72,177)
( 73,184)( 74,183)( 75,182)( 76,181)( 77,188)( 78,187)( 79,186)( 80,185)
( 81,192)( 82,191)( 83,190)( 84,189)( 85,196)( 86,195)( 87,194)( 88,193)
( 89,200)( 90,199)( 91,198)( 92,197)( 93,204)( 94,203)( 95,202)( 96,201)
( 97,208)( 98,207)( 99,206)(100,205)(101,212)(102,211)(103,210)(104,209)
(105,216)(106,215)(107,214)(108,213);;
s4 := (217,218);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s2*s3*s2*s3*s2*s3*s2*s3, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(218)!( 13, 25)( 14, 26)( 15, 27)( 16, 28)( 17, 29)( 18, 30)( 19, 31)
( 20, 32)( 21, 33)( 22, 34)( 23, 35)( 24, 36)( 49, 61)( 50, 62)( 51, 63)
( 52, 64)( 53, 65)( 54, 66)( 55, 67)( 56, 68)( 57, 69)( 58, 70)( 59, 71)
( 60, 72)( 85, 97)( 86, 98)( 87, 99)( 88,100)( 89,101)( 90,102)( 91,103)
( 92,104)( 93,105)( 94,106)( 95,107)( 96,108)(121,133)(122,134)(123,135)
(124,136)(125,137)(126,138)(127,139)(128,140)(129,141)(130,142)(131,143)
(132,144)(157,169)(158,170)(159,171)(160,172)(161,173)(162,174)(163,175)
(164,176)(165,177)(166,178)(167,179)(168,180)(193,205)(194,206)(195,207)
(196,208)(197,209)(198,210)(199,211)(200,212)(201,213)(202,214)(203,215)
(204,216);
s1 := Sym(218)!( 1, 13)( 2, 15)( 3, 14)( 4, 16)( 5, 21)( 6, 23)( 7, 22)
( 8, 24)( 9, 17)( 10, 19)( 11, 18)( 12, 20)( 26, 27)( 29, 33)( 30, 35)
( 31, 34)( 32, 36)( 37, 89)( 38, 91)( 39, 90)( 40, 92)( 41, 85)( 42, 87)
( 43, 86)( 44, 88)( 45, 93)( 46, 95)( 47, 94)( 48, 96)( 49, 77)( 50, 79)
( 51, 78)( 52, 80)( 53, 73)( 54, 75)( 55, 74)( 56, 76)( 57, 81)( 58, 83)
( 59, 82)( 60, 84)( 61,101)( 62,103)( 63,102)( 64,104)( 65, 97)( 66, 99)
( 67, 98)( 68,100)( 69,105)( 70,107)( 71,106)( 72,108)(109,121)(110,123)
(111,122)(112,124)(113,129)(114,131)(115,130)(116,132)(117,125)(118,127)
(119,126)(120,128)(134,135)(137,141)(138,143)(139,142)(140,144)(145,197)
(146,199)(147,198)(148,200)(149,193)(150,195)(151,194)(152,196)(153,201)
(154,203)(155,202)(156,204)(157,185)(158,187)(159,186)(160,188)(161,181)
(162,183)(163,182)(164,184)(165,189)(166,191)(167,190)(168,192)(169,209)
(170,211)(171,210)(172,212)(173,205)(174,207)(175,206)(176,208)(177,213)
(178,215)(179,214)(180,216);
s2 := Sym(218)!( 1, 37)( 2, 38)( 3, 40)( 4, 39)( 5, 45)( 6, 46)( 7, 48)
( 8, 47)( 9, 41)( 10, 42)( 11, 44)( 12, 43)( 13, 61)( 14, 62)( 15, 64)
( 16, 63)( 17, 69)( 18, 70)( 19, 72)( 20, 71)( 21, 65)( 22, 66)( 23, 68)
( 24, 67)( 25, 49)( 26, 50)( 27, 52)( 28, 51)( 29, 57)( 30, 58)( 31, 60)
( 32, 59)( 33, 53)( 34, 54)( 35, 56)( 36, 55)( 73, 77)( 74, 78)( 75, 80)
( 76, 79)( 83, 84)( 85,101)( 86,102)( 87,104)( 88,103)( 89, 97)( 90, 98)
( 91,100)( 92, 99)( 93,105)( 94,106)( 95,108)( 96,107)(109,145)(110,146)
(111,148)(112,147)(113,153)(114,154)(115,156)(116,155)(117,149)(118,150)
(119,152)(120,151)(121,169)(122,170)(123,172)(124,171)(125,177)(126,178)
(127,180)(128,179)(129,173)(130,174)(131,176)(132,175)(133,157)(134,158)
(135,160)(136,159)(137,165)(138,166)(139,168)(140,167)(141,161)(142,162)
(143,164)(144,163)(181,185)(182,186)(183,188)(184,187)(191,192)(193,209)
(194,210)(195,212)(196,211)(197,205)(198,206)(199,208)(200,207)(201,213)
(202,214)(203,216)(204,215);
s3 := Sym(218)!( 1,112)( 2,111)( 3,110)( 4,109)( 5,116)( 6,115)( 7,114)
( 8,113)( 9,120)( 10,119)( 11,118)( 12,117)( 13,124)( 14,123)( 15,122)
( 16,121)( 17,128)( 18,127)( 19,126)( 20,125)( 21,132)( 22,131)( 23,130)
( 24,129)( 25,136)( 26,135)( 27,134)( 28,133)( 29,140)( 30,139)( 31,138)
( 32,137)( 33,144)( 34,143)( 35,142)( 36,141)( 37,148)( 38,147)( 39,146)
( 40,145)( 41,152)( 42,151)( 43,150)( 44,149)( 45,156)( 46,155)( 47,154)
( 48,153)( 49,160)( 50,159)( 51,158)( 52,157)( 53,164)( 54,163)( 55,162)
( 56,161)( 57,168)( 58,167)( 59,166)( 60,165)( 61,172)( 62,171)( 63,170)
( 64,169)( 65,176)( 66,175)( 67,174)( 68,173)( 69,180)( 70,179)( 71,178)
( 72,177)( 73,184)( 74,183)( 75,182)( 76,181)( 77,188)( 78,187)( 79,186)
( 80,185)( 81,192)( 82,191)( 83,190)( 84,189)( 85,196)( 86,195)( 87,194)
( 88,193)( 89,200)( 90,199)( 91,198)( 92,197)( 93,204)( 94,203)( 95,202)
( 96,201)( 97,208)( 98,207)( 99,206)(100,205)(101,212)(102,211)(103,210)
(104,209)(105,216)(106,215)(107,214)(108,213);
s4 := Sym(218)!(217,218);
poly := sub<Sym(218)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope