include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,4,18,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,18,6}*1728c
if this polytope has a name.
Group : SmallGroup(1728,46115)
Rank : 5
Schlafli Type : {2,4,18,6}
Number of vertices, edges, etc : 2, 4, 36, 54, 6
Order of s0s1s2s3s4 : 18
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,4,18,2}*576b, {2,4,6,6}*576d
6-fold quotients : {2,4,9,2}*288
9-fold quotients : {2,4,6,2}*192c
18-fold quotients : {2,4,3,2}*96
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3, 5)( 4, 6)( 7, 9)( 8, 10)( 11, 13)( 12, 14)( 15, 17)( 16, 18)
( 19, 21)( 20, 22)( 23, 25)( 24, 26)( 27, 29)( 28, 30)( 31, 33)( 32, 34)
( 35, 37)( 36, 38)( 39, 41)( 40, 42)( 43, 45)( 44, 46)( 47, 49)( 48, 50)
( 51, 53)( 52, 54)( 55, 57)( 56, 58)( 59, 61)( 60, 62)( 63, 65)( 64, 66)
( 67, 69)( 68, 70)( 71, 73)( 72, 74)( 75, 77)( 76, 78)( 79, 81)( 80, 82)
( 83, 85)( 84, 86)( 87, 89)( 88, 90)( 91, 93)( 92, 94)( 95, 97)( 96, 98)
( 99,101)(100,102)(103,105)(104,106)(107,109)(108,110)(111,113)(112,114)
(115,117)(116,118)(119,121)(120,122)(123,125)(124,126)(127,129)(128,130)
(131,133)(132,134)(135,137)(136,138)(139,141)(140,142)(143,145)(144,146)
(147,149)(148,150)(151,153)(152,154)(155,157)(156,158)(159,161)(160,162)
(163,165)(164,166)(167,169)(168,170)(171,173)(172,174)(175,177)(176,178)
(179,181)(180,182)(183,185)(184,186)(187,189)(188,190)(191,193)(192,194)
(195,197)(196,198)(199,201)(200,202)(203,205)(204,206)(207,209)(208,210)
(211,213)(212,214)(215,217)(216,218);;
s2 := ( 4, 5)( 7, 11)( 8, 13)( 9, 12)( 10, 14)( 16, 17)( 19, 23)( 20, 25)
( 21, 24)( 22, 26)( 28, 29)( 31, 35)( 32, 37)( 33, 36)( 34, 38)( 39, 79)
( 40, 81)( 41, 80)( 42, 82)( 43, 75)( 44, 77)( 45, 76)( 46, 78)( 47, 83)
( 48, 85)( 49, 84)( 50, 86)( 51, 91)( 52, 93)( 53, 92)( 54, 94)( 55, 87)
( 56, 89)( 57, 88)( 58, 90)( 59, 95)( 60, 97)( 61, 96)( 62, 98)( 63,103)
( 64,105)( 65,104)( 66,106)( 67, 99)( 68,101)( 69,100)( 70,102)( 71,107)
( 72,109)( 73,108)( 74,110)(112,113)(115,119)(116,121)(117,120)(118,122)
(124,125)(127,131)(128,133)(129,132)(130,134)(136,137)(139,143)(140,145)
(141,144)(142,146)(147,187)(148,189)(149,188)(150,190)(151,183)(152,185)
(153,184)(154,186)(155,191)(156,193)(157,192)(158,194)(159,199)(160,201)
(161,200)(162,202)(163,195)(164,197)(165,196)(166,198)(167,203)(168,205)
(169,204)(170,206)(171,211)(172,213)(173,212)(174,214)(175,207)(176,209)
(177,208)(178,210)(179,215)(180,217)(181,216)(182,218);;
s3 := ( 3, 75)( 4, 78)( 5, 77)( 6, 76)( 7, 83)( 8, 86)( 9, 85)( 10, 84)
( 11, 79)( 12, 82)( 13, 81)( 14, 80)( 15, 99)( 16,102)( 17,101)( 18,100)
( 19,107)( 20,110)( 21,109)( 22,108)( 23,103)( 24,106)( 25,105)( 26,104)
( 27, 87)( 28, 90)( 29, 89)( 30, 88)( 31, 95)( 32, 98)( 33, 97)( 34, 96)
( 35, 91)( 36, 94)( 37, 93)( 38, 92)( 40, 42)( 43, 47)( 44, 50)( 45, 49)
( 46, 48)( 51, 63)( 52, 66)( 53, 65)( 54, 64)( 55, 71)( 56, 74)( 57, 73)
( 58, 72)( 59, 67)( 60, 70)( 61, 69)( 62, 68)(111,183)(112,186)(113,185)
(114,184)(115,191)(116,194)(117,193)(118,192)(119,187)(120,190)(121,189)
(122,188)(123,207)(124,210)(125,209)(126,208)(127,215)(128,218)(129,217)
(130,216)(131,211)(132,214)(133,213)(134,212)(135,195)(136,198)(137,197)
(138,196)(139,203)(140,206)(141,205)(142,204)(143,199)(144,202)(145,201)
(146,200)(148,150)(151,155)(152,158)(153,157)(154,156)(159,171)(160,174)
(161,173)(162,172)(163,179)(164,182)(165,181)(166,180)(167,175)(168,178)
(169,177)(170,176);;
s4 := ( 3,123)( 4,124)( 5,125)( 6,126)( 7,127)( 8,128)( 9,129)( 10,130)
( 11,131)( 12,132)( 13,133)( 14,134)( 15,111)( 16,112)( 17,113)( 18,114)
( 19,115)( 20,116)( 21,117)( 22,118)( 23,119)( 24,120)( 25,121)( 26,122)
( 27,135)( 28,136)( 29,137)( 30,138)( 31,139)( 32,140)( 33,141)( 34,142)
( 35,143)( 36,144)( 37,145)( 38,146)( 39,159)( 40,160)( 41,161)( 42,162)
( 43,163)( 44,164)( 45,165)( 46,166)( 47,167)( 48,168)( 49,169)( 50,170)
( 51,147)( 52,148)( 53,149)( 54,150)( 55,151)( 56,152)( 57,153)( 58,154)
( 59,155)( 60,156)( 61,157)( 62,158)( 63,171)( 64,172)( 65,173)( 66,174)
( 67,175)( 68,176)( 69,177)( 70,178)( 71,179)( 72,180)( 73,181)( 74,182)
( 75,195)( 76,196)( 77,197)( 78,198)( 79,199)( 80,200)( 81,201)( 82,202)
( 83,203)( 84,204)( 85,205)( 86,206)( 87,183)( 88,184)( 89,185)( 90,186)
( 91,187)( 92,188)( 93,189)( 94,190)( 95,191)( 96,192)( 97,193)( 98,194)
( 99,207)(100,208)(101,209)(102,210)(103,211)(104,212)(105,213)(106,214)
(107,215)(108,216)(109,217)(110,218);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s1*s2*s1*s2*s1*s2*s1*s2, s2*s3*s4*s3*s2*s3*s4*s3,
s1*s2*s3*s2*s1*s2*s3*s1*s2, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(218)!(1,2);
s1 := Sym(218)!( 3, 5)( 4, 6)( 7, 9)( 8, 10)( 11, 13)( 12, 14)( 15, 17)
( 16, 18)( 19, 21)( 20, 22)( 23, 25)( 24, 26)( 27, 29)( 28, 30)( 31, 33)
( 32, 34)( 35, 37)( 36, 38)( 39, 41)( 40, 42)( 43, 45)( 44, 46)( 47, 49)
( 48, 50)( 51, 53)( 52, 54)( 55, 57)( 56, 58)( 59, 61)( 60, 62)( 63, 65)
( 64, 66)( 67, 69)( 68, 70)( 71, 73)( 72, 74)( 75, 77)( 76, 78)( 79, 81)
( 80, 82)( 83, 85)( 84, 86)( 87, 89)( 88, 90)( 91, 93)( 92, 94)( 95, 97)
( 96, 98)( 99,101)(100,102)(103,105)(104,106)(107,109)(108,110)(111,113)
(112,114)(115,117)(116,118)(119,121)(120,122)(123,125)(124,126)(127,129)
(128,130)(131,133)(132,134)(135,137)(136,138)(139,141)(140,142)(143,145)
(144,146)(147,149)(148,150)(151,153)(152,154)(155,157)(156,158)(159,161)
(160,162)(163,165)(164,166)(167,169)(168,170)(171,173)(172,174)(175,177)
(176,178)(179,181)(180,182)(183,185)(184,186)(187,189)(188,190)(191,193)
(192,194)(195,197)(196,198)(199,201)(200,202)(203,205)(204,206)(207,209)
(208,210)(211,213)(212,214)(215,217)(216,218);
s2 := Sym(218)!( 4, 5)( 7, 11)( 8, 13)( 9, 12)( 10, 14)( 16, 17)( 19, 23)
( 20, 25)( 21, 24)( 22, 26)( 28, 29)( 31, 35)( 32, 37)( 33, 36)( 34, 38)
( 39, 79)( 40, 81)( 41, 80)( 42, 82)( 43, 75)( 44, 77)( 45, 76)( 46, 78)
( 47, 83)( 48, 85)( 49, 84)( 50, 86)( 51, 91)( 52, 93)( 53, 92)( 54, 94)
( 55, 87)( 56, 89)( 57, 88)( 58, 90)( 59, 95)( 60, 97)( 61, 96)( 62, 98)
( 63,103)( 64,105)( 65,104)( 66,106)( 67, 99)( 68,101)( 69,100)( 70,102)
( 71,107)( 72,109)( 73,108)( 74,110)(112,113)(115,119)(116,121)(117,120)
(118,122)(124,125)(127,131)(128,133)(129,132)(130,134)(136,137)(139,143)
(140,145)(141,144)(142,146)(147,187)(148,189)(149,188)(150,190)(151,183)
(152,185)(153,184)(154,186)(155,191)(156,193)(157,192)(158,194)(159,199)
(160,201)(161,200)(162,202)(163,195)(164,197)(165,196)(166,198)(167,203)
(168,205)(169,204)(170,206)(171,211)(172,213)(173,212)(174,214)(175,207)
(176,209)(177,208)(178,210)(179,215)(180,217)(181,216)(182,218);
s3 := Sym(218)!( 3, 75)( 4, 78)( 5, 77)( 6, 76)( 7, 83)( 8, 86)( 9, 85)
( 10, 84)( 11, 79)( 12, 82)( 13, 81)( 14, 80)( 15, 99)( 16,102)( 17,101)
( 18,100)( 19,107)( 20,110)( 21,109)( 22,108)( 23,103)( 24,106)( 25,105)
( 26,104)( 27, 87)( 28, 90)( 29, 89)( 30, 88)( 31, 95)( 32, 98)( 33, 97)
( 34, 96)( 35, 91)( 36, 94)( 37, 93)( 38, 92)( 40, 42)( 43, 47)( 44, 50)
( 45, 49)( 46, 48)( 51, 63)( 52, 66)( 53, 65)( 54, 64)( 55, 71)( 56, 74)
( 57, 73)( 58, 72)( 59, 67)( 60, 70)( 61, 69)( 62, 68)(111,183)(112,186)
(113,185)(114,184)(115,191)(116,194)(117,193)(118,192)(119,187)(120,190)
(121,189)(122,188)(123,207)(124,210)(125,209)(126,208)(127,215)(128,218)
(129,217)(130,216)(131,211)(132,214)(133,213)(134,212)(135,195)(136,198)
(137,197)(138,196)(139,203)(140,206)(141,205)(142,204)(143,199)(144,202)
(145,201)(146,200)(148,150)(151,155)(152,158)(153,157)(154,156)(159,171)
(160,174)(161,173)(162,172)(163,179)(164,182)(165,181)(166,180)(167,175)
(168,178)(169,177)(170,176);
s4 := Sym(218)!( 3,123)( 4,124)( 5,125)( 6,126)( 7,127)( 8,128)( 9,129)
( 10,130)( 11,131)( 12,132)( 13,133)( 14,134)( 15,111)( 16,112)( 17,113)
( 18,114)( 19,115)( 20,116)( 21,117)( 22,118)( 23,119)( 24,120)( 25,121)
( 26,122)( 27,135)( 28,136)( 29,137)( 30,138)( 31,139)( 32,140)( 33,141)
( 34,142)( 35,143)( 36,144)( 37,145)( 38,146)( 39,159)( 40,160)( 41,161)
( 42,162)( 43,163)( 44,164)( 45,165)( 46,166)( 47,167)( 48,168)( 49,169)
( 50,170)( 51,147)( 52,148)( 53,149)( 54,150)( 55,151)( 56,152)( 57,153)
( 58,154)( 59,155)( 60,156)( 61,157)( 62,158)( 63,171)( 64,172)( 65,173)
( 66,174)( 67,175)( 68,176)( 69,177)( 70,178)( 71,179)( 72,180)( 73,181)
( 74,182)( 75,195)( 76,196)( 77,197)( 78,198)( 79,199)( 80,200)( 81,201)
( 82,202)( 83,203)( 84,204)( 85,205)( 86,206)( 87,183)( 88,184)( 89,185)
( 90,186)( 91,187)( 92,188)( 93,189)( 94,190)( 95,191)( 96,192)( 97,193)
( 98,194)( 99,207)(100,208)(101,209)(102,210)(103,211)(104,212)(105,213)
(106,214)(107,215)(108,216)(109,217)(110,218);
poly := sub<Sym(218)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s4*s3*s2*s3*s4*s3, s1*s2*s3*s2*s1*s2*s3*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope