include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,2,4,18,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,4,18,2}*1728b
if this polytope has a name.
Group : SmallGroup(1728,46115)
Rank : 6
Schlafli Type : {3,2,4,18,2}
Number of vertices, edges, etc : 3, 3, 4, 36, 18, 2
Order of s0s1s2s3s4s5 : 18
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,4,9,2}*864
3-fold quotients : {3,2,4,6,2}*576c
6-fold quotients : {3,2,4,3,2}*288
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := ( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)
(24,25)(26,27)(28,29)(30,31)(32,33)(34,35)(36,37)(38,39)(40,41)(42,43)(44,45)
(46,47)(48,49)(50,51)(52,53)(54,55)(56,57)(58,59)(60,61)(62,63)(64,65)(66,67)
(68,69)(70,71)(72,73)(74,75);;
s3 := ( 5, 6)( 8,12)( 9,14)(10,13)(11,15)(16,32)(17,34)(18,33)(19,35)(20,28)
(21,30)(22,29)(23,31)(24,36)(25,38)(26,37)(27,39)(41,42)(44,48)(45,50)(46,49)
(47,51)(52,68)(53,70)(54,69)(55,71)(56,64)(57,66)(58,65)(59,67)(60,72)(61,74)
(62,73)(63,75);;
s4 := ( 4,52)( 5,53)( 6,55)( 7,54)( 8,60)( 9,61)(10,63)(11,62)(12,56)(13,57)
(14,59)(15,58)(16,40)(17,41)(18,43)(19,42)(20,48)(21,49)(22,51)(23,50)(24,44)
(25,45)(26,47)(27,46)(28,68)(29,69)(30,71)(31,70)(32,64)(33,65)(34,67)(35,66)
(36,72)(37,73)(38,75)(39,74);;
s5 := (76,77);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5,
s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s4*s3*s2*s3*s4*s2*s3, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(77)!(2,3);
s1 := Sym(77)!(1,2);
s2 := Sym(77)!( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)
(22,23)(24,25)(26,27)(28,29)(30,31)(32,33)(34,35)(36,37)(38,39)(40,41)(42,43)
(44,45)(46,47)(48,49)(50,51)(52,53)(54,55)(56,57)(58,59)(60,61)(62,63)(64,65)
(66,67)(68,69)(70,71)(72,73)(74,75);
s3 := Sym(77)!( 5, 6)( 8,12)( 9,14)(10,13)(11,15)(16,32)(17,34)(18,33)(19,35)
(20,28)(21,30)(22,29)(23,31)(24,36)(25,38)(26,37)(27,39)(41,42)(44,48)(45,50)
(46,49)(47,51)(52,68)(53,70)(54,69)(55,71)(56,64)(57,66)(58,65)(59,67)(60,72)
(61,74)(62,73)(63,75);
s4 := Sym(77)!( 4,52)( 5,53)( 6,55)( 7,54)( 8,60)( 9,61)(10,63)(11,62)(12,56)
(13,57)(14,59)(15,58)(16,40)(17,41)(18,43)(19,42)(20,48)(21,49)(22,51)(23,50)
(24,44)(25,45)(26,47)(27,46)(28,68)(29,69)(30,71)(31,70)(32,64)(33,65)(34,67)
(35,66)(36,72)(37,73)(38,75)(39,74);
s5 := Sym(77)!(76,77);
poly := sub<Sym(77)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s4*s3*s2*s3*s4*s2*s3, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope