Polytope of Type {3,2,18,4,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,18,4,2}*1728c
if this polytope has a name.
Group : SmallGroup(1728,46115)
Rank : 6
Schlafli Type : {3,2,18,4,2}
Number of vertices, edges, etc : 3, 3, 18, 36, 4, 2
Order of s0s1s2s3s4s5 : 18
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,2,9,4,2}*864
   3-fold quotients : {3,2,6,4,2}*576b
   6-fold quotients : {3,2,3,4,2}*288
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := ( 5, 6)( 8,12)( 9,14)(10,13)(11,15)(16,32)(17,34)(18,33)(19,35)(20,28)
(21,30)(22,29)(23,31)(24,36)(25,38)(26,37)(27,39)(41,42)(44,48)(45,50)(46,49)
(47,51)(52,68)(53,70)(54,69)(55,71)(56,64)(57,66)(58,65)(59,67)(60,72)(61,74)
(62,73)(63,75);;
s3 := ( 4,52)( 5,53)( 6,55)( 7,54)( 8,60)( 9,61)(10,63)(11,62)(12,56)(13,57)
(14,59)(15,58)(16,40)(17,41)(18,43)(19,42)(20,48)(21,49)(22,51)(23,50)(24,44)
(25,45)(26,47)(27,46)(28,68)(29,69)(30,71)(31,70)(32,64)(33,65)(34,67)(35,66)
(36,72)(37,73)(38,75)(39,74);;
s4 := ( 4,43)( 5,42)( 6,41)( 7,40)( 8,47)( 9,46)(10,45)(11,44)(12,51)(13,50)
(14,49)(15,48)(16,55)(17,54)(18,53)(19,52)(20,59)(21,58)(22,57)(23,56)(24,63)
(25,62)(26,61)(27,60)(28,67)(29,66)(30,65)(31,64)(32,71)(33,70)(34,69)(35,68)
(36,75)(37,74)(38,73)(39,72);;
s5 := (76,77);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5, 
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5, 
s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4*s3*s4, 
s2*s3*s4*s3*s2*s3*s2*s3*s4*s3*s2*s3, 
s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s4*s2*s3*s4*s2*s3*s2*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(77)!(2,3);
s1 := Sym(77)!(1,2);
s2 := Sym(77)!( 5, 6)( 8,12)( 9,14)(10,13)(11,15)(16,32)(17,34)(18,33)(19,35)
(20,28)(21,30)(22,29)(23,31)(24,36)(25,38)(26,37)(27,39)(41,42)(44,48)(45,50)
(46,49)(47,51)(52,68)(53,70)(54,69)(55,71)(56,64)(57,66)(58,65)(59,67)(60,72)
(61,74)(62,73)(63,75);
s3 := Sym(77)!( 4,52)( 5,53)( 6,55)( 7,54)( 8,60)( 9,61)(10,63)(11,62)(12,56)
(13,57)(14,59)(15,58)(16,40)(17,41)(18,43)(19,42)(20,48)(21,49)(22,51)(23,50)
(24,44)(25,45)(26,47)(27,46)(28,68)(29,69)(30,71)(31,70)(32,64)(33,65)(34,67)
(35,66)(36,72)(37,73)(38,75)(39,74);
s4 := Sym(77)!( 4,43)( 5,42)( 6,41)( 7,40)( 8,47)( 9,46)(10,45)(11,44)(12,51)
(13,50)(14,49)(15,48)(16,55)(17,54)(18,53)(19,52)(20,59)(21,58)(22,57)(23,56)
(24,63)(25,62)(26,61)(27,60)(28,67)(29,66)(30,65)(31,64)(32,71)(33,70)(34,69)
(35,68)(36,75)(37,74)(38,73)(39,72);
s5 := Sym(77)!(76,77);
poly := sub<Sym(77)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5, 
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5, 
s4*s5*s4*s5, s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4*s3*s4, 
s2*s3*s4*s3*s2*s3*s2*s3*s4*s3*s2*s3, 
s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s4*s2*s3*s4*s2*s3*s2*s4 >; 
 

to this polytope