include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,18,2,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,18,2,3}*1728
if this polytope has a name.
Group : SmallGroup(1728,46115)
Rank : 5
Schlafli Type : {4,18,2,3}
Number of vertices, edges, etc : 8, 72, 36, 3, 3
Order of s0s1s2s3s4 : 18
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,9,2,3}*864, {4,18,2,3}*864b, {4,18,2,3}*864c
3-fold quotients : {4,6,2,3}*576
4-fold quotients : {4,9,2,3}*432, {2,18,2,3}*432
6-fold quotients : {4,3,2,3}*288, {4,6,2,3}*288b, {4,6,2,3}*288c
8-fold quotients : {2,9,2,3}*216
12-fold quotients : {4,3,2,3}*144, {2,6,2,3}*144
24-fold quotients : {2,3,2,3}*72
36-fold quotients : {2,2,2,3}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 38)( 2, 37)( 3, 40)( 4, 39)( 5, 42)( 6, 41)( 7, 44)( 8, 43)
( 9, 46)( 10, 45)( 11, 48)( 12, 47)( 13, 50)( 14, 49)( 15, 52)( 16, 51)
( 17, 54)( 18, 53)( 19, 56)( 20, 55)( 21, 58)( 22, 57)( 23, 60)( 24, 59)
( 25, 62)( 26, 61)( 27, 64)( 28, 63)( 29, 66)( 30, 65)( 31, 68)( 32, 67)
( 33, 70)( 34, 69)( 35, 72)( 36, 71)( 73,110)( 74,109)( 75,112)( 76,111)
( 77,114)( 78,113)( 79,116)( 80,115)( 81,118)( 82,117)( 83,120)( 84,119)
( 85,122)( 86,121)( 87,124)( 88,123)( 89,126)( 90,125)( 91,128)( 92,127)
( 93,130)( 94,129)( 95,132)( 96,131)( 97,134)( 98,133)( 99,136)(100,135)
(101,138)(102,137)(103,140)(104,139)(105,142)(106,141)(107,144)(108,143);;
s1 := ( 2, 3)( 5, 9)( 6, 11)( 7, 10)( 8, 12)( 13, 29)( 14, 31)( 15, 30)
( 16, 32)( 17, 25)( 18, 27)( 19, 26)( 20, 28)( 21, 33)( 22, 35)( 23, 34)
( 24, 36)( 38, 39)( 41, 45)( 42, 47)( 43, 46)( 44, 48)( 49, 65)( 50, 67)
( 51, 66)( 52, 68)( 53, 61)( 54, 63)( 55, 62)( 56, 64)( 57, 69)( 58, 71)
( 59, 70)( 60, 72)( 74, 75)( 77, 81)( 78, 83)( 79, 82)( 80, 84)( 85,101)
( 86,103)( 87,102)( 88,104)( 89, 97)( 90, 99)( 91, 98)( 92,100)( 93,105)
( 94,107)( 95,106)( 96,108)(110,111)(113,117)(114,119)(115,118)(116,120)
(121,137)(122,139)(123,138)(124,140)(125,133)(126,135)(127,134)(128,136)
(129,141)(130,143)(131,142)(132,144);;
s2 := ( 1, 85)( 2, 86)( 3, 88)( 4, 87)( 5, 93)( 6, 94)( 7, 96)( 8, 95)
( 9, 89)( 10, 90)( 11, 92)( 12, 91)( 13, 73)( 14, 74)( 15, 76)( 16, 75)
( 17, 81)( 18, 82)( 19, 84)( 20, 83)( 21, 77)( 22, 78)( 23, 80)( 24, 79)
( 25,101)( 26,102)( 27,104)( 28,103)( 29, 97)( 30, 98)( 31,100)( 32, 99)
( 33,105)( 34,106)( 35,108)( 36,107)( 37,121)( 38,122)( 39,124)( 40,123)
( 41,129)( 42,130)( 43,132)( 44,131)( 45,125)( 46,126)( 47,128)( 48,127)
( 49,109)( 50,110)( 51,112)( 52,111)( 53,117)( 54,118)( 55,120)( 56,119)
( 57,113)( 58,114)( 59,116)( 60,115)( 61,137)( 62,138)( 63,140)( 64,139)
( 65,133)( 66,134)( 67,136)( 68,135)( 69,141)( 70,142)( 71,144)( 72,143);;
s3 := (146,147);;
s4 := (145,146);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(147)!( 1, 38)( 2, 37)( 3, 40)( 4, 39)( 5, 42)( 6, 41)( 7, 44)
( 8, 43)( 9, 46)( 10, 45)( 11, 48)( 12, 47)( 13, 50)( 14, 49)( 15, 52)
( 16, 51)( 17, 54)( 18, 53)( 19, 56)( 20, 55)( 21, 58)( 22, 57)( 23, 60)
( 24, 59)( 25, 62)( 26, 61)( 27, 64)( 28, 63)( 29, 66)( 30, 65)( 31, 68)
( 32, 67)( 33, 70)( 34, 69)( 35, 72)( 36, 71)( 73,110)( 74,109)( 75,112)
( 76,111)( 77,114)( 78,113)( 79,116)( 80,115)( 81,118)( 82,117)( 83,120)
( 84,119)( 85,122)( 86,121)( 87,124)( 88,123)( 89,126)( 90,125)( 91,128)
( 92,127)( 93,130)( 94,129)( 95,132)( 96,131)( 97,134)( 98,133)( 99,136)
(100,135)(101,138)(102,137)(103,140)(104,139)(105,142)(106,141)(107,144)
(108,143);
s1 := Sym(147)!( 2, 3)( 5, 9)( 6, 11)( 7, 10)( 8, 12)( 13, 29)( 14, 31)
( 15, 30)( 16, 32)( 17, 25)( 18, 27)( 19, 26)( 20, 28)( 21, 33)( 22, 35)
( 23, 34)( 24, 36)( 38, 39)( 41, 45)( 42, 47)( 43, 46)( 44, 48)( 49, 65)
( 50, 67)( 51, 66)( 52, 68)( 53, 61)( 54, 63)( 55, 62)( 56, 64)( 57, 69)
( 58, 71)( 59, 70)( 60, 72)( 74, 75)( 77, 81)( 78, 83)( 79, 82)( 80, 84)
( 85,101)( 86,103)( 87,102)( 88,104)( 89, 97)( 90, 99)( 91, 98)( 92,100)
( 93,105)( 94,107)( 95,106)( 96,108)(110,111)(113,117)(114,119)(115,118)
(116,120)(121,137)(122,139)(123,138)(124,140)(125,133)(126,135)(127,134)
(128,136)(129,141)(130,143)(131,142)(132,144);
s2 := Sym(147)!( 1, 85)( 2, 86)( 3, 88)( 4, 87)( 5, 93)( 6, 94)( 7, 96)
( 8, 95)( 9, 89)( 10, 90)( 11, 92)( 12, 91)( 13, 73)( 14, 74)( 15, 76)
( 16, 75)( 17, 81)( 18, 82)( 19, 84)( 20, 83)( 21, 77)( 22, 78)( 23, 80)
( 24, 79)( 25,101)( 26,102)( 27,104)( 28,103)( 29, 97)( 30, 98)( 31,100)
( 32, 99)( 33,105)( 34,106)( 35,108)( 36,107)( 37,121)( 38,122)( 39,124)
( 40,123)( 41,129)( 42,130)( 43,132)( 44,131)( 45,125)( 46,126)( 47,128)
( 48,127)( 49,109)( 50,110)( 51,112)( 52,111)( 53,117)( 54,118)( 55,120)
( 56,119)( 57,113)( 58,114)( 59,116)( 60,115)( 61,137)( 62,138)( 63,140)
( 64,139)( 65,133)( 66,134)( 67,136)( 68,135)( 69,141)( 70,142)( 71,144)
( 72,143);
s3 := Sym(147)!(146,147);
s4 := Sym(147)!(145,146);
poly := sub<Sym(147)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope