Polytope of Type {4,18,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,18,6,2}*1728c
if this polytope has a name.
Group : SmallGroup(1728,46115)
Rank : 5
Schlafli Type : {4,18,6,2}
Number of vertices, edges, etc : 4, 36, 54, 6, 2
Order of s0s1s2s3s4 : 18
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {4,18,2,2}*576b, {4,6,6,2}*576d
   6-fold quotients : {4,9,2,2}*288
   9-fold quotients : {4,6,2,2}*192c
   18-fold quotients : {4,3,2,2}*96
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,  3)(  2,  4)(  5,  7)(  6,  8)(  9, 11)( 10, 12)( 13, 15)( 14, 16)
( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)( 30, 32)
( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)( 46, 48)
( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)( 62, 64)
( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)( 78, 80)
( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)( 94, 96)
( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)
(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)(126,128)
(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)(142,144)
(145,147)(146,148)(149,151)(150,152)(153,155)(154,156)(157,159)(158,160)
(161,163)(162,164)(165,167)(166,168)(169,171)(170,172)(173,175)(174,176)
(177,179)(178,180)(181,183)(182,184)(185,187)(186,188)(189,191)(190,192)
(193,195)(194,196)(197,199)(198,200)(201,203)(202,204)(205,207)(206,208)
(209,211)(210,212)(213,215)(214,216);;
s1 := (  2,  3)(  5,  9)(  6, 11)(  7, 10)(  8, 12)( 14, 15)( 17, 21)( 18, 23)
( 19, 22)( 20, 24)( 26, 27)( 29, 33)( 30, 35)( 31, 34)( 32, 36)( 37, 77)
( 38, 79)( 39, 78)( 40, 80)( 41, 73)( 42, 75)( 43, 74)( 44, 76)( 45, 81)
( 46, 83)( 47, 82)( 48, 84)( 49, 89)( 50, 91)( 51, 90)( 52, 92)( 53, 85)
( 54, 87)( 55, 86)( 56, 88)( 57, 93)( 58, 95)( 59, 94)( 60, 96)( 61,101)
( 62,103)( 63,102)( 64,104)( 65, 97)( 66, 99)( 67, 98)( 68,100)( 69,105)
( 70,107)( 71,106)( 72,108)(110,111)(113,117)(114,119)(115,118)(116,120)
(122,123)(125,129)(126,131)(127,130)(128,132)(134,135)(137,141)(138,143)
(139,142)(140,144)(145,185)(146,187)(147,186)(148,188)(149,181)(150,183)
(151,182)(152,184)(153,189)(154,191)(155,190)(156,192)(157,197)(158,199)
(159,198)(160,200)(161,193)(162,195)(163,194)(164,196)(165,201)(166,203)
(167,202)(168,204)(169,209)(170,211)(171,210)(172,212)(173,205)(174,207)
(175,206)(176,208)(177,213)(178,215)(179,214)(180,216);;
s2 := (  1, 73)(  2, 76)(  3, 75)(  4, 74)(  5, 81)(  6, 84)(  7, 83)(  8, 82)
(  9, 77)( 10, 80)( 11, 79)( 12, 78)( 13, 97)( 14,100)( 15, 99)( 16, 98)
( 17,105)( 18,108)( 19,107)( 20,106)( 21,101)( 22,104)( 23,103)( 24,102)
( 25, 85)( 26, 88)( 27, 87)( 28, 86)( 29, 93)( 30, 96)( 31, 95)( 32, 94)
( 33, 89)( 34, 92)( 35, 91)( 36, 90)( 38, 40)( 41, 45)( 42, 48)( 43, 47)
( 44, 46)( 49, 61)( 50, 64)( 51, 63)( 52, 62)( 53, 69)( 54, 72)( 55, 71)
( 56, 70)( 57, 65)( 58, 68)( 59, 67)( 60, 66)(109,181)(110,184)(111,183)
(112,182)(113,189)(114,192)(115,191)(116,190)(117,185)(118,188)(119,187)
(120,186)(121,205)(122,208)(123,207)(124,206)(125,213)(126,216)(127,215)
(128,214)(129,209)(130,212)(131,211)(132,210)(133,193)(134,196)(135,195)
(136,194)(137,201)(138,204)(139,203)(140,202)(141,197)(142,200)(143,199)
(144,198)(146,148)(149,153)(150,156)(151,155)(152,154)(157,169)(158,172)
(159,171)(160,170)(161,177)(162,180)(163,179)(164,178)(165,173)(166,176)
(167,175)(168,174);;
s3 := (  1,121)(  2,122)(  3,123)(  4,124)(  5,125)(  6,126)(  7,127)(  8,128)
(  9,129)( 10,130)( 11,131)( 12,132)( 13,109)( 14,110)( 15,111)( 16,112)
( 17,113)( 18,114)( 19,115)( 20,116)( 21,117)( 22,118)( 23,119)( 24,120)
( 25,133)( 26,134)( 27,135)( 28,136)( 29,137)( 30,138)( 31,139)( 32,140)
( 33,141)( 34,142)( 35,143)( 36,144)( 37,157)( 38,158)( 39,159)( 40,160)
( 41,161)( 42,162)( 43,163)( 44,164)( 45,165)( 46,166)( 47,167)( 48,168)
( 49,145)( 50,146)( 51,147)( 52,148)( 53,149)( 54,150)( 55,151)( 56,152)
( 57,153)( 58,154)( 59,155)( 60,156)( 61,169)( 62,170)( 63,171)( 64,172)
( 65,173)( 66,174)( 67,175)( 68,176)( 69,177)( 70,178)( 71,179)( 72,180)
( 73,193)( 74,194)( 75,195)( 76,196)( 77,197)( 78,198)( 79,199)( 80,200)
( 81,201)( 82,202)( 83,203)( 84,204)( 85,181)( 86,182)( 87,183)( 88,184)
( 89,185)( 90,186)( 91,187)( 92,188)( 93,189)( 94,190)( 95,191)( 96,192)
( 97,205)( 98,206)( 99,207)(100,208)(101,209)(102,210)(103,211)(104,212)
(105,213)(106,214)(107,215)(108,216);;
s4 := (217,218);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s0*s1*s0*s1*s0*s1, s1*s2*s3*s2*s1*s2*s3*s2, 
s0*s1*s2*s1*s0*s1*s2*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(218)!(  1,  3)(  2,  4)(  5,  7)(  6,  8)(  9, 11)( 10, 12)( 13, 15)
( 14, 16)( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)
( 30, 32)( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)
( 46, 48)( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)
( 62, 64)( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)
( 78, 80)( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)
( 94, 96)( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)
(110,112)(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)
(126,128)(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)
(142,144)(145,147)(146,148)(149,151)(150,152)(153,155)(154,156)(157,159)
(158,160)(161,163)(162,164)(165,167)(166,168)(169,171)(170,172)(173,175)
(174,176)(177,179)(178,180)(181,183)(182,184)(185,187)(186,188)(189,191)
(190,192)(193,195)(194,196)(197,199)(198,200)(201,203)(202,204)(205,207)
(206,208)(209,211)(210,212)(213,215)(214,216);
s1 := Sym(218)!(  2,  3)(  5,  9)(  6, 11)(  7, 10)(  8, 12)( 14, 15)( 17, 21)
( 18, 23)( 19, 22)( 20, 24)( 26, 27)( 29, 33)( 30, 35)( 31, 34)( 32, 36)
( 37, 77)( 38, 79)( 39, 78)( 40, 80)( 41, 73)( 42, 75)( 43, 74)( 44, 76)
( 45, 81)( 46, 83)( 47, 82)( 48, 84)( 49, 89)( 50, 91)( 51, 90)( 52, 92)
( 53, 85)( 54, 87)( 55, 86)( 56, 88)( 57, 93)( 58, 95)( 59, 94)( 60, 96)
( 61,101)( 62,103)( 63,102)( 64,104)( 65, 97)( 66, 99)( 67, 98)( 68,100)
( 69,105)( 70,107)( 71,106)( 72,108)(110,111)(113,117)(114,119)(115,118)
(116,120)(122,123)(125,129)(126,131)(127,130)(128,132)(134,135)(137,141)
(138,143)(139,142)(140,144)(145,185)(146,187)(147,186)(148,188)(149,181)
(150,183)(151,182)(152,184)(153,189)(154,191)(155,190)(156,192)(157,197)
(158,199)(159,198)(160,200)(161,193)(162,195)(163,194)(164,196)(165,201)
(166,203)(167,202)(168,204)(169,209)(170,211)(171,210)(172,212)(173,205)
(174,207)(175,206)(176,208)(177,213)(178,215)(179,214)(180,216);
s2 := Sym(218)!(  1, 73)(  2, 76)(  3, 75)(  4, 74)(  5, 81)(  6, 84)(  7, 83)
(  8, 82)(  9, 77)( 10, 80)( 11, 79)( 12, 78)( 13, 97)( 14,100)( 15, 99)
( 16, 98)( 17,105)( 18,108)( 19,107)( 20,106)( 21,101)( 22,104)( 23,103)
( 24,102)( 25, 85)( 26, 88)( 27, 87)( 28, 86)( 29, 93)( 30, 96)( 31, 95)
( 32, 94)( 33, 89)( 34, 92)( 35, 91)( 36, 90)( 38, 40)( 41, 45)( 42, 48)
( 43, 47)( 44, 46)( 49, 61)( 50, 64)( 51, 63)( 52, 62)( 53, 69)( 54, 72)
( 55, 71)( 56, 70)( 57, 65)( 58, 68)( 59, 67)( 60, 66)(109,181)(110,184)
(111,183)(112,182)(113,189)(114,192)(115,191)(116,190)(117,185)(118,188)
(119,187)(120,186)(121,205)(122,208)(123,207)(124,206)(125,213)(126,216)
(127,215)(128,214)(129,209)(130,212)(131,211)(132,210)(133,193)(134,196)
(135,195)(136,194)(137,201)(138,204)(139,203)(140,202)(141,197)(142,200)
(143,199)(144,198)(146,148)(149,153)(150,156)(151,155)(152,154)(157,169)
(158,172)(159,171)(160,170)(161,177)(162,180)(163,179)(164,178)(165,173)
(166,176)(167,175)(168,174);
s3 := Sym(218)!(  1,121)(  2,122)(  3,123)(  4,124)(  5,125)(  6,126)(  7,127)
(  8,128)(  9,129)( 10,130)( 11,131)( 12,132)( 13,109)( 14,110)( 15,111)
( 16,112)( 17,113)( 18,114)( 19,115)( 20,116)( 21,117)( 22,118)( 23,119)
( 24,120)( 25,133)( 26,134)( 27,135)( 28,136)( 29,137)( 30,138)( 31,139)
( 32,140)( 33,141)( 34,142)( 35,143)( 36,144)( 37,157)( 38,158)( 39,159)
( 40,160)( 41,161)( 42,162)( 43,163)( 44,164)( 45,165)( 46,166)( 47,167)
( 48,168)( 49,145)( 50,146)( 51,147)( 52,148)( 53,149)( 54,150)( 55,151)
( 56,152)( 57,153)( 58,154)( 59,155)( 60,156)( 61,169)( 62,170)( 63,171)
( 64,172)( 65,173)( 66,174)( 67,175)( 68,176)( 69,177)( 70,178)( 71,179)
( 72,180)( 73,193)( 74,194)( 75,195)( 76,196)( 77,197)( 78,198)( 79,199)
( 80,200)( 81,201)( 82,202)( 83,203)( 84,204)( 85,181)( 86,182)( 87,183)
( 88,184)( 89,185)( 90,186)( 91,187)( 92,188)( 93,189)( 94,190)( 95,191)
( 96,192)( 97,205)( 98,206)( 99,207)(100,208)(101,209)(102,210)(103,211)
(104,212)(105,213)(106,214)(107,215)(108,216);
s4 := Sym(218)!(217,218);
poly := sub<Sym(218)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s3*s2*s1*s2*s3*s2, s0*s1*s2*s1*s0*s1*s2*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope