include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,18,6,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,18,6,2}*1728e
if this polytope has a name.
Group : SmallGroup(1728,46115)
Rank : 5
Schlafli Type : {4,18,6,2}
Number of vertices, edges, etc : 4, 36, 54, 6, 2
Order of s0s1s2s3s4 : 18
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,9,6,2}*864
3-fold quotients : {4,18,2,2}*576c, {4,6,6,2}*576f
6-fold quotients : {4,9,2,2}*288, {4,3,6,2}*288
9-fold quotients : {4,6,2,2}*192b
18-fold quotients : {4,3,2,2}*96
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,111)( 2,112)( 3,109)( 4,110)( 5,115)( 6,116)( 7,113)( 8,114)
( 9,119)( 10,120)( 11,117)( 12,118)( 13,123)( 14,124)( 15,121)( 16,122)
( 17,127)( 18,128)( 19,125)( 20,126)( 21,131)( 22,132)( 23,129)( 24,130)
( 25,135)( 26,136)( 27,133)( 28,134)( 29,139)( 30,140)( 31,137)( 32,138)
( 33,143)( 34,144)( 35,141)( 36,142)( 37,147)( 38,148)( 39,145)( 40,146)
( 41,151)( 42,152)( 43,149)( 44,150)( 45,155)( 46,156)( 47,153)( 48,154)
( 49,159)( 50,160)( 51,157)( 52,158)( 53,163)( 54,164)( 55,161)( 56,162)
( 57,167)( 58,168)( 59,165)( 60,166)( 61,171)( 62,172)( 63,169)( 64,170)
( 65,175)( 66,176)( 67,173)( 68,174)( 69,179)( 70,180)( 71,177)( 72,178)
( 73,183)( 74,184)( 75,181)( 76,182)( 77,187)( 78,188)( 79,185)( 80,186)
( 81,191)( 82,192)( 83,189)( 84,190)( 85,195)( 86,196)( 87,193)( 88,194)
( 89,199)( 90,200)( 91,197)( 92,198)( 93,203)( 94,204)( 95,201)( 96,202)
( 97,207)( 98,208)( 99,205)(100,206)(101,211)(102,212)(103,209)(104,210)
(105,215)(106,216)(107,213)(108,214);;
s1 := ( 2, 3)( 5, 9)( 6, 11)( 7, 10)( 8, 12)( 13, 25)( 14, 27)( 15, 26)
( 16, 28)( 17, 33)( 18, 35)( 19, 34)( 20, 36)( 21, 29)( 22, 31)( 23, 30)
( 24, 32)( 37, 77)( 38, 79)( 39, 78)( 40, 80)( 41, 73)( 42, 75)( 43, 74)
( 44, 76)( 45, 81)( 46, 83)( 47, 82)( 48, 84)( 49,101)( 50,103)( 51,102)
( 52,104)( 53, 97)( 54, 99)( 55, 98)( 56,100)( 57,105)( 58,107)( 59,106)
( 60,108)( 61, 89)( 62, 91)( 63, 90)( 64, 92)( 65, 85)( 66, 87)( 67, 86)
( 68, 88)( 69, 93)( 70, 95)( 71, 94)( 72, 96)(110,111)(113,117)(114,119)
(115,118)(116,120)(121,133)(122,135)(123,134)(124,136)(125,141)(126,143)
(127,142)(128,144)(129,137)(130,139)(131,138)(132,140)(145,185)(146,187)
(147,186)(148,188)(149,181)(150,183)(151,182)(152,184)(153,189)(154,191)
(155,190)(156,192)(157,209)(158,211)(159,210)(160,212)(161,205)(162,207)
(163,206)(164,208)(165,213)(166,215)(167,214)(168,216)(169,197)(170,199)
(171,198)(172,200)(173,193)(174,195)(175,194)(176,196)(177,201)(178,203)
(179,202)(180,204);;
s2 := ( 1,193)( 2,196)( 3,195)( 4,194)( 5,201)( 6,204)( 7,203)( 8,202)
( 9,197)( 10,200)( 11,199)( 12,198)( 13,181)( 14,184)( 15,183)( 16,182)
( 17,189)( 18,192)( 19,191)( 20,190)( 21,185)( 22,188)( 23,187)( 24,186)
( 25,205)( 26,208)( 27,207)( 28,206)( 29,213)( 30,216)( 31,215)( 32,214)
( 33,209)( 34,212)( 35,211)( 36,210)( 37,157)( 38,160)( 39,159)( 40,158)
( 41,165)( 42,168)( 43,167)( 44,166)( 45,161)( 46,164)( 47,163)( 48,162)
( 49,145)( 50,148)( 51,147)( 52,146)( 53,153)( 54,156)( 55,155)( 56,154)
( 57,149)( 58,152)( 59,151)( 60,150)( 61,169)( 62,172)( 63,171)( 64,170)
( 65,177)( 66,180)( 67,179)( 68,178)( 69,173)( 70,176)( 71,175)( 72,174)
( 73,121)( 74,124)( 75,123)( 76,122)( 77,129)( 78,132)( 79,131)( 80,130)
( 81,125)( 82,128)( 83,127)( 84,126)( 85,109)( 86,112)( 87,111)( 88,110)
( 89,117)( 90,120)( 91,119)( 92,118)( 93,113)( 94,116)( 95,115)( 96,114)
( 97,133)( 98,136)( 99,135)(100,134)(101,141)(102,144)(103,143)(104,142)
(105,137)(106,140)(107,139)(108,138);;
s3 := ( 13, 25)( 14, 26)( 15, 27)( 16, 28)( 17, 29)( 18, 30)( 19, 31)( 20, 32)
( 21, 33)( 22, 34)( 23, 35)( 24, 36)( 49, 61)( 50, 62)( 51, 63)( 52, 64)
( 53, 65)( 54, 66)( 55, 67)( 56, 68)( 57, 69)( 58, 70)( 59, 71)( 60, 72)
( 85, 97)( 86, 98)( 87, 99)( 88,100)( 89,101)( 90,102)( 91,103)( 92,104)
( 93,105)( 94,106)( 95,107)( 96,108)(121,133)(122,134)(123,135)(124,136)
(125,137)(126,138)(127,139)(128,140)(129,141)(130,142)(131,143)(132,144)
(157,169)(158,170)(159,171)(160,172)(161,173)(162,174)(163,175)(164,176)
(165,177)(166,178)(167,179)(168,180)(193,205)(194,206)(195,207)(196,208)
(197,209)(198,210)(199,211)(200,212)(201,213)(202,214)(203,215)(204,216);;
s4 := (217,218);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1*s0*s1, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2,
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2,
s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s2*s0*s1*s0 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(218)!( 1,111)( 2,112)( 3,109)( 4,110)( 5,115)( 6,116)( 7,113)
( 8,114)( 9,119)( 10,120)( 11,117)( 12,118)( 13,123)( 14,124)( 15,121)
( 16,122)( 17,127)( 18,128)( 19,125)( 20,126)( 21,131)( 22,132)( 23,129)
( 24,130)( 25,135)( 26,136)( 27,133)( 28,134)( 29,139)( 30,140)( 31,137)
( 32,138)( 33,143)( 34,144)( 35,141)( 36,142)( 37,147)( 38,148)( 39,145)
( 40,146)( 41,151)( 42,152)( 43,149)( 44,150)( 45,155)( 46,156)( 47,153)
( 48,154)( 49,159)( 50,160)( 51,157)( 52,158)( 53,163)( 54,164)( 55,161)
( 56,162)( 57,167)( 58,168)( 59,165)( 60,166)( 61,171)( 62,172)( 63,169)
( 64,170)( 65,175)( 66,176)( 67,173)( 68,174)( 69,179)( 70,180)( 71,177)
( 72,178)( 73,183)( 74,184)( 75,181)( 76,182)( 77,187)( 78,188)( 79,185)
( 80,186)( 81,191)( 82,192)( 83,189)( 84,190)( 85,195)( 86,196)( 87,193)
( 88,194)( 89,199)( 90,200)( 91,197)( 92,198)( 93,203)( 94,204)( 95,201)
( 96,202)( 97,207)( 98,208)( 99,205)(100,206)(101,211)(102,212)(103,209)
(104,210)(105,215)(106,216)(107,213)(108,214);
s1 := Sym(218)!( 2, 3)( 5, 9)( 6, 11)( 7, 10)( 8, 12)( 13, 25)( 14, 27)
( 15, 26)( 16, 28)( 17, 33)( 18, 35)( 19, 34)( 20, 36)( 21, 29)( 22, 31)
( 23, 30)( 24, 32)( 37, 77)( 38, 79)( 39, 78)( 40, 80)( 41, 73)( 42, 75)
( 43, 74)( 44, 76)( 45, 81)( 46, 83)( 47, 82)( 48, 84)( 49,101)( 50,103)
( 51,102)( 52,104)( 53, 97)( 54, 99)( 55, 98)( 56,100)( 57,105)( 58,107)
( 59,106)( 60,108)( 61, 89)( 62, 91)( 63, 90)( 64, 92)( 65, 85)( 66, 87)
( 67, 86)( 68, 88)( 69, 93)( 70, 95)( 71, 94)( 72, 96)(110,111)(113,117)
(114,119)(115,118)(116,120)(121,133)(122,135)(123,134)(124,136)(125,141)
(126,143)(127,142)(128,144)(129,137)(130,139)(131,138)(132,140)(145,185)
(146,187)(147,186)(148,188)(149,181)(150,183)(151,182)(152,184)(153,189)
(154,191)(155,190)(156,192)(157,209)(158,211)(159,210)(160,212)(161,205)
(162,207)(163,206)(164,208)(165,213)(166,215)(167,214)(168,216)(169,197)
(170,199)(171,198)(172,200)(173,193)(174,195)(175,194)(176,196)(177,201)
(178,203)(179,202)(180,204);
s2 := Sym(218)!( 1,193)( 2,196)( 3,195)( 4,194)( 5,201)( 6,204)( 7,203)
( 8,202)( 9,197)( 10,200)( 11,199)( 12,198)( 13,181)( 14,184)( 15,183)
( 16,182)( 17,189)( 18,192)( 19,191)( 20,190)( 21,185)( 22,188)( 23,187)
( 24,186)( 25,205)( 26,208)( 27,207)( 28,206)( 29,213)( 30,216)( 31,215)
( 32,214)( 33,209)( 34,212)( 35,211)( 36,210)( 37,157)( 38,160)( 39,159)
( 40,158)( 41,165)( 42,168)( 43,167)( 44,166)( 45,161)( 46,164)( 47,163)
( 48,162)( 49,145)( 50,148)( 51,147)( 52,146)( 53,153)( 54,156)( 55,155)
( 56,154)( 57,149)( 58,152)( 59,151)( 60,150)( 61,169)( 62,172)( 63,171)
( 64,170)( 65,177)( 66,180)( 67,179)( 68,178)( 69,173)( 70,176)( 71,175)
( 72,174)( 73,121)( 74,124)( 75,123)( 76,122)( 77,129)( 78,132)( 79,131)
( 80,130)( 81,125)( 82,128)( 83,127)( 84,126)( 85,109)( 86,112)( 87,111)
( 88,110)( 89,117)( 90,120)( 91,119)( 92,118)( 93,113)( 94,116)( 95,115)
( 96,114)( 97,133)( 98,136)( 99,135)(100,134)(101,141)(102,144)(103,143)
(104,142)(105,137)(106,140)(107,139)(108,138);
s3 := Sym(218)!( 13, 25)( 14, 26)( 15, 27)( 16, 28)( 17, 29)( 18, 30)( 19, 31)
( 20, 32)( 21, 33)( 22, 34)( 23, 35)( 24, 36)( 49, 61)( 50, 62)( 51, 63)
( 52, 64)( 53, 65)( 54, 66)( 55, 67)( 56, 68)( 57, 69)( 58, 70)( 59, 71)
( 60, 72)( 85, 97)( 86, 98)( 87, 99)( 88,100)( 89,101)( 90,102)( 91,103)
( 92,104)( 93,105)( 94,106)( 95,107)( 96,108)(121,133)(122,134)(123,135)
(124,136)(125,137)(126,138)(127,139)(128,140)(129,141)(130,142)(131,143)
(132,144)(157,169)(158,170)(159,171)(160,172)(161,173)(162,174)(163,175)
(164,176)(165,177)(166,178)(167,179)(168,180)(193,205)(194,206)(195,207)
(196,208)(197,209)(198,210)(199,211)(200,212)(201,213)(202,214)(203,215)
(204,216);
s4 := Sym(218)!(217,218);
poly := sub<Sym(218)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1,
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2,
s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s2*s0*s1*s0 >;
to this polytope