include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,2,4,9,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,2,4,9,2}*1728
if this polytope has a name.
Group : SmallGroup(1728,46115)
Rank : 6
Schlafli Type : {6,2,4,9,2}
Number of vertices, edges, etc : 6, 6, 4, 18, 9, 2
Order of s0s1s2s3s4s5 : 18
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,4,9,2}*864
3-fold quotients : {2,2,4,9,2}*576, {6,2,4,3,2}*576
6-fold quotients : {3,2,4,3,2}*288
9-fold quotients : {2,2,4,3,2}*192
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (3,4)(5,6);;
s1 := (1,5)(2,3)(4,6);;
s2 := ( 8,13)( 9,15)(10,17)(11,19)(14,24)(16,26)(20,30)(27,36)(29,38)(31,39)
(33,40)(35,41);;
s3 := ( 7, 8)( 9,12)(10,11)(13,21)(14,20)(15,22)(16,18)(17,19)(23,29)(24,30)
(25,27)(26,28)(31,37)(32,38)(33,35)(34,36)(39,42)(40,41);;
s4 := ( 7,12)( 8,10)( 9,20)(11,16)(13,17)(14,29)(15,30)(18,25)(19,26)(21,22)
(23,37)(24,38)(27,33)(28,34)(31,35)(32,42)(36,40)(39,41);;
s5 := (43,44);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5,
s2*s3*s2*s3*s2*s3*s2*s3, s2*s3*s4*s3*s2*s3*s4*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(44)!(3,4)(5,6);
s1 := Sym(44)!(1,5)(2,3)(4,6);
s2 := Sym(44)!( 8,13)( 9,15)(10,17)(11,19)(14,24)(16,26)(20,30)(27,36)(29,38)
(31,39)(33,40)(35,41);
s3 := Sym(44)!( 7, 8)( 9,12)(10,11)(13,21)(14,20)(15,22)(16,18)(17,19)(23,29)
(24,30)(25,27)(26,28)(31,37)(32,38)(33,35)(34,36)(39,42)(40,41);
s4 := Sym(44)!( 7,12)( 8,10)( 9,20)(11,16)(13,17)(14,29)(15,30)(18,25)(19,26)
(21,22)(23,37)(24,38)(27,33)(28,34)(31,35)(32,42)(36,40)(39,41);
s5 := Sym(44)!(43,44);
poly := sub<Sym(44)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s4*s3*s2*s3*s4*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope