Polytope of Type {6,2,4,18}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,2,4,18}*1728b
if this polytope has a name.
Group : SmallGroup(1728,46115)
Rank : 5
Schlafli Type : {6,2,4,18}
Number of vertices, edges, etc : 6, 6, 4, 36, 18
Order of s0s1s2s3s4 : 18
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,2,4,18}*864b, {6,2,4,9}*864
   3-fold quotients : {2,2,4,18}*576b, {6,2,4,6}*576c
   4-fold quotients : {3,2,4,9}*432
   6-fold quotients : {2,2,4,9}*288, {3,2,4,6}*288c, {6,2,4,3}*288
   9-fold quotients : {2,2,4,6}*192c
   12-fold quotients : {3,2,4,3}*144
   18-fold quotients : {2,2,4,3}*96
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (3,4)(5,6);;
s1 := (1,5)(2,3)(4,6);;
s2 := ( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)
(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48)
(49,50)(51,52)(53,54)(55,56)(57,58)(59,60)(61,62)(63,64)(65,66)(67,68)(69,70)
(71,72)(73,74)(75,76)(77,78);;
s3 := ( 8, 9)(11,15)(12,17)(13,16)(14,18)(19,35)(20,37)(21,36)(22,38)(23,31)
(24,33)(25,32)(26,34)(27,39)(28,41)(29,40)(30,42)(44,45)(47,51)(48,53)(49,52)
(50,54)(55,71)(56,73)(57,72)(58,74)(59,67)(60,69)(61,68)(62,70)(63,75)(64,77)
(65,76)(66,78);;
s4 := ( 7,55)( 8,56)( 9,58)(10,57)(11,63)(12,64)(13,66)(14,65)(15,59)(16,60)
(17,62)(18,61)(19,43)(20,44)(21,46)(22,45)(23,51)(24,52)(25,54)(26,53)(27,47)
(28,48)(29,50)(30,49)(31,71)(32,72)(33,74)(34,73)(35,67)(36,68)(37,70)(38,69)
(39,75)(40,76)(41,78)(42,77);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s2*s3*s2*s3*s2*s3*s2*s3, s2*s3*s4*s3*s2*s3*s4*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(78)!(3,4)(5,6);
s1 := Sym(78)!(1,5)(2,3)(4,6);
s2 := Sym(78)!( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)
(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)
(47,48)(49,50)(51,52)(53,54)(55,56)(57,58)(59,60)(61,62)(63,64)(65,66)(67,68)
(69,70)(71,72)(73,74)(75,76)(77,78);
s3 := Sym(78)!( 8, 9)(11,15)(12,17)(13,16)(14,18)(19,35)(20,37)(21,36)(22,38)
(23,31)(24,33)(25,32)(26,34)(27,39)(28,41)(29,40)(30,42)(44,45)(47,51)(48,53)
(49,52)(50,54)(55,71)(56,73)(57,72)(58,74)(59,67)(60,69)(61,68)(62,70)(63,75)
(64,77)(65,76)(66,78);
s4 := Sym(78)!( 7,55)( 8,56)( 9,58)(10,57)(11,63)(12,64)(13,66)(14,65)(15,59)
(16,60)(17,62)(18,61)(19,43)(20,44)(21,46)(22,45)(23,51)(24,52)(25,54)(26,53)
(27,47)(28,48)(29,50)(30,49)(31,71)(32,72)(33,74)(34,73)(35,67)(36,68)(37,70)
(38,69)(39,75)(40,76)(41,78)(42,77);
poly := sub<Sym(78)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s3*s4*s3*s2*s3*s4*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope