include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,6,6,4,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,6,4,2}*1728
if this polytope has a name.
Group : SmallGroup(1728,46116)
Rank : 6
Schlafli Type : {2,6,6,4,2}
Number of vertices, edges, etc : 2, 9, 27, 18, 4, 2
Order of s0s1s2s3s4s5 : 6
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
No Regular Quotients.
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 7,11)( 8,12)( 9,13)(10,14)(15,27)(16,28)(17,29)(18,30)(19,35)(20,36)
(21,37)(22,38)(23,31)(24,32)(25,33)(26,34);;
s2 := ( 3,15)( 4,17)( 5,16)( 6,18)( 7,19)( 8,21)( 9,20)(10,22)(11,23)(12,25)
(13,24)(14,26)(28,29)(32,33)(36,37);;
s3 := ( 5, 6)( 7,11)( 8,12)( 9,14)(10,13)(15,19)(16,20)(17,22)(18,21)(25,26)
(27,35)(28,36)(29,38)(30,37)(33,34);;
s4 := ( 3, 6)( 4, 5)( 7,10)( 8, 9)(11,14)(12,13)(15,18)(16,17)(19,22)(20,21)
(23,26)(24,25)(27,30)(28,29)(31,34)(32,33)(35,38)(36,37);;
s5 := (39,40);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5,
s3*s4*s3*s4*s3*s4*s3*s4, s1*s2*s3*s1*s2*s3*s1*s2*s3,
s4*s3*s2*s4*s3*s4*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(40)!(1,2);
s1 := Sym(40)!( 7,11)( 8,12)( 9,13)(10,14)(15,27)(16,28)(17,29)(18,30)(19,35)
(20,36)(21,37)(22,38)(23,31)(24,32)(25,33)(26,34);
s2 := Sym(40)!( 3,15)( 4,17)( 5,16)( 6,18)( 7,19)( 8,21)( 9,20)(10,22)(11,23)
(12,25)(13,24)(14,26)(28,29)(32,33)(36,37);
s3 := Sym(40)!( 5, 6)( 7,11)( 8,12)( 9,14)(10,13)(15,19)(16,20)(17,22)(18,21)
(25,26)(27,35)(28,36)(29,38)(30,37)(33,34);
s4 := Sym(40)!( 3, 6)( 4, 5)( 7,10)( 8, 9)(11,14)(12,13)(15,18)(16,17)(19,22)
(20,21)(23,26)(24,25)(27,30)(28,29)(31,34)(32,33)(35,38)(36,37);
s5 := Sym(40)!(39,40);
poly := sub<Sym(40)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s3*s4*s3*s4*s3*s4*s3*s4,
s1*s2*s3*s1*s2*s3*s1*s2*s3, s4*s3*s2*s4*s3*s4*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope