Polytope of Type {2,12,3,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,12,3,2}*1728
if this polytope has a name.
Group : SmallGroup(1728,46116)
Rank : 5
Schlafli Type : {2,12,3,2}
Number of vertices, edges, etc : 2, 72, 108, 18, 2
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,12,3,2}*576
   4-fold quotients : {2,6,3,2}*432
   9-fold quotients : {2,4,3,2}*192
   12-fold quotients : {2,6,3,2}*144
   18-fold quotients : {2,4,3,2}*96
   36-fold quotients : {2,2,3,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3, 5)( 4, 6)( 7,13)( 8,14)( 9,11)(10,12)(15,29)(16,30)(17,27)(18,28)
(19,37)(20,38)(21,35)(22,36)(23,33)(24,34)(25,31)(26,32);;
s2 := ( 3,15)( 4,17)( 5,16)( 6,18)( 7,19)( 8,21)( 9,20)(10,22)(11,23)(12,25)
(13,24)(14,26)(28,29)(32,33)(36,37);;
s3 := ( 4, 6)( 8,10)(12,14)(15,31)(16,34)(17,33)(18,32)(19,35)(20,38)(21,37)
(22,36)(23,27)(24,30)(25,29)(26,28);;
s4 := (39,40);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s2*s3*s2*s3*s2*s3, s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(40)!(1,2);
s1 := Sym(40)!( 3, 5)( 4, 6)( 7,13)( 8,14)( 9,11)(10,12)(15,29)(16,30)(17,27)
(18,28)(19,37)(20,38)(21,35)(22,36)(23,33)(24,34)(25,31)(26,32);
s2 := Sym(40)!( 3,15)( 4,17)( 5,16)( 6,18)( 7,19)( 8,21)( 9,20)(10,22)(11,23)
(12,25)(13,24)(14,26)(28,29)(32,33)(36,37);
s3 := Sym(40)!( 4, 6)( 8,10)(12,14)(15,31)(16,34)(17,33)(18,32)(19,35)(20,38)
(21,37)(22,36)(23,27)(24,30)(25,29)(26,28);
s4 := Sym(40)!(39,40);
poly := sub<Sym(40)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s2*s3*s2*s3*s2*s3, s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope