Polytope of Type {3,12,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,12,6,2}*1728a
if this polytope has a name.
Group : SmallGroup(1728,46116)
Rank : 5
Schlafli Type : {3,12,6,2}
Number of vertices, edges, etc : 6, 36, 72, 6, 2
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {3,4,6,2}*576
   4-fold quotients : {3,6,6,2}*432a
   8-fold quotients : {3,6,3,2}*216
   9-fold quotients : {3,4,2,2}*192
   12-fold quotients : {3,2,6,2}*144
   18-fold quotients : {3,4,2,2}*96
   24-fold quotients : {3,2,3,2}*72
   36-fold quotients : {3,2,2,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  3)(  5,  9)(  6, 11)(  7, 10)(  8, 12)( 14, 15)( 17, 21)( 18, 23)
( 19, 22)( 20, 24)( 26, 27)( 29, 33)( 30, 35)( 31, 34)( 32, 36)( 37, 73)
( 38, 75)( 39, 74)( 40, 76)( 41, 81)( 42, 83)( 43, 82)( 44, 84)( 45, 77)
( 46, 79)( 47, 78)( 48, 80)( 49, 85)( 50, 87)( 51, 86)( 52, 88)( 53, 93)
( 54, 95)( 55, 94)( 56, 96)( 57, 89)( 58, 91)( 59, 90)( 60, 92)( 61, 97)
( 62, 99)( 63, 98)( 64,100)( 65,105)( 66,107)( 67,106)( 68,108)( 69,101)
( 70,103)( 71,102)( 72,104)(110,111)(113,117)(114,119)(115,118)(116,120)
(122,123)(125,129)(126,131)(127,130)(128,132)(134,135)(137,141)(138,143)
(139,142)(140,144)(145,181)(146,183)(147,182)(148,184)(149,189)(150,191)
(151,190)(152,192)(153,185)(154,187)(155,186)(156,188)(157,193)(158,195)
(159,194)(160,196)(161,201)(162,203)(163,202)(164,204)(165,197)(166,199)
(167,198)(168,200)(169,205)(170,207)(171,206)(172,208)(173,213)(174,215)
(175,214)(176,216)(177,209)(178,211)(179,210)(180,212);;
s1 := (  1, 37)(  2, 38)(  3, 40)(  4, 39)(  5, 45)(  6, 46)(  7, 48)(  8, 47)
(  9, 41)( 10, 42)( 11, 44)( 12, 43)( 13, 53)( 14, 54)( 15, 56)( 16, 55)
( 17, 49)( 18, 50)( 19, 52)( 20, 51)( 21, 57)( 22, 58)( 23, 60)( 24, 59)
( 25, 69)( 26, 70)( 27, 72)( 28, 71)( 29, 65)( 30, 66)( 31, 68)( 32, 67)
( 33, 61)( 34, 62)( 35, 64)( 36, 63)( 75, 76)( 77, 81)( 78, 82)( 79, 84)
( 80, 83)( 85, 89)( 86, 90)( 87, 92)( 88, 91)( 95, 96)( 97,105)( 98,106)
( 99,108)(100,107)(103,104)(109,145)(110,146)(111,148)(112,147)(113,153)
(114,154)(115,156)(116,155)(117,149)(118,150)(119,152)(120,151)(121,161)
(122,162)(123,164)(124,163)(125,157)(126,158)(127,160)(128,159)(129,165)
(130,166)(131,168)(132,167)(133,177)(134,178)(135,180)(136,179)(137,173)
(138,174)(139,176)(140,175)(141,169)(142,170)(143,172)(144,171)(183,184)
(185,189)(186,190)(187,192)(188,191)(193,197)(194,198)(195,200)(196,199)
(203,204)(205,213)(206,214)(207,216)(208,215)(211,212);;
s2 := (  1, 16)(  2, 15)(  3, 14)(  4, 13)(  5, 24)(  6, 23)(  7, 22)(  8, 21)
(  9, 20)( 10, 19)( 11, 18)( 12, 17)( 25, 28)( 26, 27)( 29, 36)( 30, 35)
( 31, 34)( 32, 33)( 37, 52)( 38, 51)( 39, 50)( 40, 49)( 41, 60)( 42, 59)
( 43, 58)( 44, 57)( 45, 56)( 46, 55)( 47, 54)( 48, 53)( 61, 64)( 62, 63)
( 65, 72)( 66, 71)( 67, 70)( 68, 69)( 73, 88)( 74, 87)( 75, 86)( 76, 85)
( 77, 96)( 78, 95)( 79, 94)( 80, 93)( 81, 92)( 82, 91)( 83, 90)( 84, 89)
( 97,100)( 98, 99)(101,108)(102,107)(103,106)(104,105)(109,124)(110,123)
(111,122)(112,121)(113,132)(114,131)(115,130)(116,129)(117,128)(118,127)
(119,126)(120,125)(133,136)(134,135)(137,144)(138,143)(139,142)(140,141)
(145,160)(146,159)(147,158)(148,157)(149,168)(150,167)(151,166)(152,165)
(153,164)(154,163)(155,162)(156,161)(169,172)(170,171)(173,180)(174,179)
(175,178)(176,177)(181,196)(182,195)(183,194)(184,193)(185,204)(186,203)
(187,202)(188,201)(189,200)(190,199)(191,198)(192,197)(205,208)(206,207)
(209,216)(210,215)(211,214)(212,213);;
s3 := (  1,109)(  2,110)(  3,111)(  4,112)(  5,117)(  6,118)(  7,119)(  8,120)
(  9,113)( 10,114)( 11,115)( 12,116)( 13,133)( 14,134)( 15,135)( 16,136)
( 17,141)( 18,142)( 19,143)( 20,144)( 21,137)( 22,138)( 23,139)( 24,140)
( 25,121)( 26,122)( 27,123)( 28,124)( 29,129)( 30,130)( 31,131)( 32,132)
( 33,125)( 34,126)( 35,127)( 36,128)( 37,145)( 38,146)( 39,147)( 40,148)
( 41,153)( 42,154)( 43,155)( 44,156)( 45,149)( 46,150)( 47,151)( 48,152)
( 49,169)( 50,170)( 51,171)( 52,172)( 53,177)( 54,178)( 55,179)( 56,180)
( 57,173)( 58,174)( 59,175)( 60,176)( 61,157)( 62,158)( 63,159)( 64,160)
( 65,165)( 66,166)( 67,167)( 68,168)( 69,161)( 70,162)( 71,163)( 72,164)
( 73,181)( 74,182)( 75,183)( 76,184)( 77,189)( 78,190)( 79,191)( 80,192)
( 81,185)( 82,186)( 83,187)( 84,188)( 85,205)( 86,206)( 87,207)( 88,208)
( 89,213)( 90,214)( 91,215)( 92,216)( 93,209)( 94,210)( 95,211)( 96,212)
( 97,193)( 98,194)( 99,195)(100,196)(101,201)(102,202)(103,203)(104,204)
(105,197)(106,198)(107,199)(108,200);;
s4 := (217,218);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s0*s1*s0*s1, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s0*s2*s3*s2*s1*s3*s2*s3*s2*s0*s1*s3*s2*s3*s2*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(218)!(  2,  3)(  5,  9)(  6, 11)(  7, 10)(  8, 12)( 14, 15)( 17, 21)
( 18, 23)( 19, 22)( 20, 24)( 26, 27)( 29, 33)( 30, 35)( 31, 34)( 32, 36)
( 37, 73)( 38, 75)( 39, 74)( 40, 76)( 41, 81)( 42, 83)( 43, 82)( 44, 84)
( 45, 77)( 46, 79)( 47, 78)( 48, 80)( 49, 85)( 50, 87)( 51, 86)( 52, 88)
( 53, 93)( 54, 95)( 55, 94)( 56, 96)( 57, 89)( 58, 91)( 59, 90)( 60, 92)
( 61, 97)( 62, 99)( 63, 98)( 64,100)( 65,105)( 66,107)( 67,106)( 68,108)
( 69,101)( 70,103)( 71,102)( 72,104)(110,111)(113,117)(114,119)(115,118)
(116,120)(122,123)(125,129)(126,131)(127,130)(128,132)(134,135)(137,141)
(138,143)(139,142)(140,144)(145,181)(146,183)(147,182)(148,184)(149,189)
(150,191)(151,190)(152,192)(153,185)(154,187)(155,186)(156,188)(157,193)
(158,195)(159,194)(160,196)(161,201)(162,203)(163,202)(164,204)(165,197)
(166,199)(167,198)(168,200)(169,205)(170,207)(171,206)(172,208)(173,213)
(174,215)(175,214)(176,216)(177,209)(178,211)(179,210)(180,212);
s1 := Sym(218)!(  1, 37)(  2, 38)(  3, 40)(  4, 39)(  5, 45)(  6, 46)(  7, 48)
(  8, 47)(  9, 41)( 10, 42)( 11, 44)( 12, 43)( 13, 53)( 14, 54)( 15, 56)
( 16, 55)( 17, 49)( 18, 50)( 19, 52)( 20, 51)( 21, 57)( 22, 58)( 23, 60)
( 24, 59)( 25, 69)( 26, 70)( 27, 72)( 28, 71)( 29, 65)( 30, 66)( 31, 68)
( 32, 67)( 33, 61)( 34, 62)( 35, 64)( 36, 63)( 75, 76)( 77, 81)( 78, 82)
( 79, 84)( 80, 83)( 85, 89)( 86, 90)( 87, 92)( 88, 91)( 95, 96)( 97,105)
( 98,106)( 99,108)(100,107)(103,104)(109,145)(110,146)(111,148)(112,147)
(113,153)(114,154)(115,156)(116,155)(117,149)(118,150)(119,152)(120,151)
(121,161)(122,162)(123,164)(124,163)(125,157)(126,158)(127,160)(128,159)
(129,165)(130,166)(131,168)(132,167)(133,177)(134,178)(135,180)(136,179)
(137,173)(138,174)(139,176)(140,175)(141,169)(142,170)(143,172)(144,171)
(183,184)(185,189)(186,190)(187,192)(188,191)(193,197)(194,198)(195,200)
(196,199)(203,204)(205,213)(206,214)(207,216)(208,215)(211,212);
s2 := Sym(218)!(  1, 16)(  2, 15)(  3, 14)(  4, 13)(  5, 24)(  6, 23)(  7, 22)
(  8, 21)(  9, 20)( 10, 19)( 11, 18)( 12, 17)( 25, 28)( 26, 27)( 29, 36)
( 30, 35)( 31, 34)( 32, 33)( 37, 52)( 38, 51)( 39, 50)( 40, 49)( 41, 60)
( 42, 59)( 43, 58)( 44, 57)( 45, 56)( 46, 55)( 47, 54)( 48, 53)( 61, 64)
( 62, 63)( 65, 72)( 66, 71)( 67, 70)( 68, 69)( 73, 88)( 74, 87)( 75, 86)
( 76, 85)( 77, 96)( 78, 95)( 79, 94)( 80, 93)( 81, 92)( 82, 91)( 83, 90)
( 84, 89)( 97,100)( 98, 99)(101,108)(102,107)(103,106)(104,105)(109,124)
(110,123)(111,122)(112,121)(113,132)(114,131)(115,130)(116,129)(117,128)
(118,127)(119,126)(120,125)(133,136)(134,135)(137,144)(138,143)(139,142)
(140,141)(145,160)(146,159)(147,158)(148,157)(149,168)(150,167)(151,166)
(152,165)(153,164)(154,163)(155,162)(156,161)(169,172)(170,171)(173,180)
(174,179)(175,178)(176,177)(181,196)(182,195)(183,194)(184,193)(185,204)
(186,203)(187,202)(188,201)(189,200)(190,199)(191,198)(192,197)(205,208)
(206,207)(209,216)(210,215)(211,214)(212,213);
s3 := Sym(218)!(  1,109)(  2,110)(  3,111)(  4,112)(  5,117)(  6,118)(  7,119)
(  8,120)(  9,113)( 10,114)( 11,115)( 12,116)( 13,133)( 14,134)( 15,135)
( 16,136)( 17,141)( 18,142)( 19,143)( 20,144)( 21,137)( 22,138)( 23,139)
( 24,140)( 25,121)( 26,122)( 27,123)( 28,124)( 29,129)( 30,130)( 31,131)
( 32,132)( 33,125)( 34,126)( 35,127)( 36,128)( 37,145)( 38,146)( 39,147)
( 40,148)( 41,153)( 42,154)( 43,155)( 44,156)( 45,149)( 46,150)( 47,151)
( 48,152)( 49,169)( 50,170)( 51,171)( 52,172)( 53,177)( 54,178)( 55,179)
( 56,180)( 57,173)( 58,174)( 59,175)( 60,176)( 61,157)( 62,158)( 63,159)
( 64,160)( 65,165)( 66,166)( 67,167)( 68,168)( 69,161)( 70,162)( 71,163)
( 72,164)( 73,181)( 74,182)( 75,183)( 76,184)( 77,189)( 78,190)( 79,191)
( 80,192)( 81,185)( 82,186)( 83,187)( 84,188)( 85,205)( 86,206)( 87,207)
( 88,208)( 89,213)( 90,214)( 91,215)( 92,216)( 93,209)( 94,210)( 95,211)
( 96,212)( 97,193)( 98,194)( 99,195)(100,196)(101,201)(102,202)(103,203)
(104,204)(105,197)(106,198)(107,199)(108,200);
s4 := Sym(218)!(217,218);
poly := sub<Sym(218)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s0*s1*s0*s1, 
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s0*s2*s3*s2*s1*s3*s2*s3*s2*s0*s1*s3*s2*s3*s2*s0*s1 >; 
 

to this polytope