Polytope of Type {4,6,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,6,6,2}*1728f
if this polytope has a name.
Group : SmallGroup(1728,46116)
Rank : 5
Schlafli Type : {4,6,6,2}
Number of vertices, edges, etc : 4, 36, 54, 18, 2
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,3,6,2}*864
   3-fold quotients : {4,6,6,2}*576f
   6-fold quotients : {4,3,6,2}*288
   9-fold quotients : {4,6,2,2}*192b
   18-fold quotients : {4,3,2,2}*96
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,111)(  2,112)(  3,109)(  4,110)(  5,115)(  6,116)(  7,113)(  8,114)
(  9,119)( 10,120)( 11,117)( 12,118)( 13,123)( 14,124)( 15,121)( 16,122)
( 17,127)( 18,128)( 19,125)( 20,126)( 21,131)( 22,132)( 23,129)( 24,130)
( 25,135)( 26,136)( 27,133)( 28,134)( 29,139)( 30,140)( 31,137)( 32,138)
( 33,143)( 34,144)( 35,141)( 36,142)( 37,147)( 38,148)( 39,145)( 40,146)
( 41,151)( 42,152)( 43,149)( 44,150)( 45,155)( 46,156)( 47,153)( 48,154)
( 49,159)( 50,160)( 51,157)( 52,158)( 53,163)( 54,164)( 55,161)( 56,162)
( 57,167)( 58,168)( 59,165)( 60,166)( 61,171)( 62,172)( 63,169)( 64,170)
( 65,175)( 66,176)( 67,173)( 68,174)( 69,179)( 70,180)( 71,177)( 72,178)
( 73,183)( 74,184)( 75,181)( 76,182)( 77,187)( 78,188)( 79,185)( 80,186)
( 81,191)( 82,192)( 83,189)( 84,190)( 85,195)( 86,196)( 87,193)( 88,194)
( 89,199)( 90,200)( 91,197)( 92,198)( 93,203)( 94,204)( 95,201)( 96,202)
( 97,207)( 98,208)( 99,205)(100,206)(101,211)(102,212)(103,209)(104,210)
(105,215)(106,216)(107,213)(108,214);;
s1 := (  2,  3)(  6,  7)( 10, 11)( 13, 25)( 14, 27)( 15, 26)( 16, 28)( 17, 29)
( 18, 31)( 19, 30)( 20, 32)( 21, 33)( 22, 35)( 23, 34)( 24, 36)( 37, 73)
( 38, 75)( 39, 74)( 40, 76)( 41, 77)( 42, 79)( 43, 78)( 44, 80)( 45, 81)
( 46, 83)( 47, 82)( 48, 84)( 49, 97)( 50, 99)( 51, 98)( 52,100)( 53,101)
( 54,103)( 55,102)( 56,104)( 57,105)( 58,107)( 59,106)( 60,108)( 61, 85)
( 62, 87)( 63, 86)( 64, 88)( 65, 89)( 66, 91)( 67, 90)( 68, 92)( 69, 93)
( 70, 95)( 71, 94)( 72, 96)(110,111)(114,115)(118,119)(121,133)(122,135)
(123,134)(124,136)(125,137)(126,139)(127,138)(128,140)(129,141)(130,143)
(131,142)(132,144)(145,181)(146,183)(147,182)(148,184)(149,185)(150,187)
(151,186)(152,188)(153,189)(154,191)(155,190)(156,192)(157,205)(158,207)
(159,206)(160,208)(161,209)(162,211)(163,210)(164,212)(165,213)(166,215)
(167,214)(168,216)(169,193)(170,195)(171,194)(172,196)(173,197)(174,199)
(175,198)(176,200)(177,201)(178,203)(179,202)(180,204);;
s2 := (  1,197)(  2,200)(  3,199)(  4,198)(  5,201)(  6,204)(  7,203)(  8,202)
(  9,193)( 10,196)( 11,195)( 12,194)( 13,189)( 14,192)( 15,191)( 16,190)
( 17,181)( 18,184)( 19,183)( 20,182)( 21,185)( 22,188)( 23,187)( 24,186)
( 25,205)( 26,208)( 27,207)( 28,206)( 29,209)( 30,212)( 31,211)( 32,210)
( 33,213)( 34,216)( 35,215)( 36,214)( 37,161)( 38,164)( 39,163)( 40,162)
( 41,165)( 42,168)( 43,167)( 44,166)( 45,157)( 46,160)( 47,159)( 48,158)
( 49,153)( 50,156)( 51,155)( 52,154)( 53,145)( 54,148)( 55,147)( 56,146)
( 57,149)( 58,152)( 59,151)( 60,150)( 61,169)( 62,172)( 63,171)( 64,170)
( 65,173)( 66,176)( 67,175)( 68,174)( 69,177)( 70,180)( 71,179)( 72,178)
( 73,125)( 74,128)( 75,127)( 76,126)( 77,129)( 78,132)( 79,131)( 80,130)
( 81,121)( 82,124)( 83,123)( 84,122)( 85,117)( 86,120)( 87,119)( 88,118)
( 89,109)( 90,112)( 91,111)( 92,110)( 93,113)( 94,116)( 95,115)( 96,114)
( 97,133)( 98,136)( 99,135)(100,134)(101,137)(102,140)(103,139)(104,138)
(105,141)(106,144)(107,143)(108,142);;
s3 := (  5,  9)(  6, 10)(  7, 11)(  8, 12)( 13, 25)( 14, 26)( 15, 27)( 16, 28)
( 17, 33)( 18, 34)( 19, 35)( 20, 36)( 21, 29)( 22, 30)( 23, 31)( 24, 32)
( 41, 45)( 42, 46)( 43, 47)( 44, 48)( 49, 61)( 50, 62)( 51, 63)( 52, 64)
( 53, 69)( 54, 70)( 55, 71)( 56, 72)( 57, 65)( 58, 66)( 59, 67)( 60, 68)
( 77, 81)( 78, 82)( 79, 83)( 80, 84)( 85, 97)( 86, 98)( 87, 99)( 88,100)
( 89,105)( 90,106)( 91,107)( 92,108)( 93,101)( 94,102)( 95,103)( 96,104)
(113,117)(114,118)(115,119)(116,120)(121,133)(122,134)(123,135)(124,136)
(125,141)(126,142)(127,143)(128,144)(129,137)(130,138)(131,139)(132,140)
(149,153)(150,154)(151,155)(152,156)(157,169)(158,170)(159,171)(160,172)
(161,177)(162,178)(163,179)(164,180)(165,173)(166,174)(167,175)(168,176)
(185,189)(186,190)(187,191)(188,192)(193,205)(194,206)(195,207)(196,208)
(197,213)(198,214)(199,215)(200,216)(201,209)(202,210)(203,211)(204,212);;
s4 := (217,218);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s0*s1*s2*s0*s1*s2, 
s0*s1*s2*s3*s2*s1*s0*s1*s2*s3*s2*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(218)!(  1,111)(  2,112)(  3,109)(  4,110)(  5,115)(  6,116)(  7,113)
(  8,114)(  9,119)( 10,120)( 11,117)( 12,118)( 13,123)( 14,124)( 15,121)
( 16,122)( 17,127)( 18,128)( 19,125)( 20,126)( 21,131)( 22,132)( 23,129)
( 24,130)( 25,135)( 26,136)( 27,133)( 28,134)( 29,139)( 30,140)( 31,137)
( 32,138)( 33,143)( 34,144)( 35,141)( 36,142)( 37,147)( 38,148)( 39,145)
( 40,146)( 41,151)( 42,152)( 43,149)( 44,150)( 45,155)( 46,156)( 47,153)
( 48,154)( 49,159)( 50,160)( 51,157)( 52,158)( 53,163)( 54,164)( 55,161)
( 56,162)( 57,167)( 58,168)( 59,165)( 60,166)( 61,171)( 62,172)( 63,169)
( 64,170)( 65,175)( 66,176)( 67,173)( 68,174)( 69,179)( 70,180)( 71,177)
( 72,178)( 73,183)( 74,184)( 75,181)( 76,182)( 77,187)( 78,188)( 79,185)
( 80,186)( 81,191)( 82,192)( 83,189)( 84,190)( 85,195)( 86,196)( 87,193)
( 88,194)( 89,199)( 90,200)( 91,197)( 92,198)( 93,203)( 94,204)( 95,201)
( 96,202)( 97,207)( 98,208)( 99,205)(100,206)(101,211)(102,212)(103,209)
(104,210)(105,215)(106,216)(107,213)(108,214);
s1 := Sym(218)!(  2,  3)(  6,  7)( 10, 11)( 13, 25)( 14, 27)( 15, 26)( 16, 28)
( 17, 29)( 18, 31)( 19, 30)( 20, 32)( 21, 33)( 22, 35)( 23, 34)( 24, 36)
( 37, 73)( 38, 75)( 39, 74)( 40, 76)( 41, 77)( 42, 79)( 43, 78)( 44, 80)
( 45, 81)( 46, 83)( 47, 82)( 48, 84)( 49, 97)( 50, 99)( 51, 98)( 52,100)
( 53,101)( 54,103)( 55,102)( 56,104)( 57,105)( 58,107)( 59,106)( 60,108)
( 61, 85)( 62, 87)( 63, 86)( 64, 88)( 65, 89)( 66, 91)( 67, 90)( 68, 92)
( 69, 93)( 70, 95)( 71, 94)( 72, 96)(110,111)(114,115)(118,119)(121,133)
(122,135)(123,134)(124,136)(125,137)(126,139)(127,138)(128,140)(129,141)
(130,143)(131,142)(132,144)(145,181)(146,183)(147,182)(148,184)(149,185)
(150,187)(151,186)(152,188)(153,189)(154,191)(155,190)(156,192)(157,205)
(158,207)(159,206)(160,208)(161,209)(162,211)(163,210)(164,212)(165,213)
(166,215)(167,214)(168,216)(169,193)(170,195)(171,194)(172,196)(173,197)
(174,199)(175,198)(176,200)(177,201)(178,203)(179,202)(180,204);
s2 := Sym(218)!(  1,197)(  2,200)(  3,199)(  4,198)(  5,201)(  6,204)(  7,203)
(  8,202)(  9,193)( 10,196)( 11,195)( 12,194)( 13,189)( 14,192)( 15,191)
( 16,190)( 17,181)( 18,184)( 19,183)( 20,182)( 21,185)( 22,188)( 23,187)
( 24,186)( 25,205)( 26,208)( 27,207)( 28,206)( 29,209)( 30,212)( 31,211)
( 32,210)( 33,213)( 34,216)( 35,215)( 36,214)( 37,161)( 38,164)( 39,163)
( 40,162)( 41,165)( 42,168)( 43,167)( 44,166)( 45,157)( 46,160)( 47,159)
( 48,158)( 49,153)( 50,156)( 51,155)( 52,154)( 53,145)( 54,148)( 55,147)
( 56,146)( 57,149)( 58,152)( 59,151)( 60,150)( 61,169)( 62,172)( 63,171)
( 64,170)( 65,173)( 66,176)( 67,175)( 68,174)( 69,177)( 70,180)( 71,179)
( 72,178)( 73,125)( 74,128)( 75,127)( 76,126)( 77,129)( 78,132)( 79,131)
( 80,130)( 81,121)( 82,124)( 83,123)( 84,122)( 85,117)( 86,120)( 87,119)
( 88,118)( 89,109)( 90,112)( 91,111)( 92,110)( 93,113)( 94,116)( 95,115)
( 96,114)( 97,133)( 98,136)( 99,135)(100,134)(101,137)(102,140)(103,139)
(104,138)(105,141)(106,144)(107,143)(108,142);
s3 := Sym(218)!(  5,  9)(  6, 10)(  7, 11)(  8, 12)( 13, 25)( 14, 26)( 15, 27)
( 16, 28)( 17, 33)( 18, 34)( 19, 35)( 20, 36)( 21, 29)( 22, 30)( 23, 31)
( 24, 32)( 41, 45)( 42, 46)( 43, 47)( 44, 48)( 49, 61)( 50, 62)( 51, 63)
( 52, 64)( 53, 69)( 54, 70)( 55, 71)( 56, 72)( 57, 65)( 58, 66)( 59, 67)
( 60, 68)( 77, 81)( 78, 82)( 79, 83)( 80, 84)( 85, 97)( 86, 98)( 87, 99)
( 88,100)( 89,105)( 90,106)( 91,107)( 92,108)( 93,101)( 94,102)( 95,103)
( 96,104)(113,117)(114,118)(115,119)(116,120)(121,133)(122,134)(123,135)
(124,136)(125,141)(126,142)(127,143)(128,144)(129,137)(130,138)(131,139)
(132,140)(149,153)(150,154)(151,155)(152,156)(157,169)(158,170)(159,171)
(160,172)(161,177)(162,178)(163,179)(164,180)(165,173)(166,174)(167,175)
(168,176)(185,189)(186,190)(187,191)(188,192)(193,205)(194,206)(195,207)
(196,208)(197,213)(198,214)(199,215)(200,216)(201,209)(202,210)(203,211)
(204,212);
s4 := Sym(218)!(217,218);
poly := sub<Sym(218)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s0*s1*s2*s0*s1*s2, s0*s1*s2*s3*s2*s1*s0*s1*s2*s3*s2*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2 >; 
 

to this polytope