include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,12,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,12,2,2}*1728f
if this polytope has a name.
Group : SmallGroup(1728,46139)
Rank : 5
Schlafli Type : {6,12,2,2}
Number of vertices, edges, etc : 18, 108, 36, 2, 2
Order of s0s1s2s3s4 : 4
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,12,2,2}*864b
3-fold quotients : {6,4,2,2}*576
6-fold quotients : {6,4,2,2}*288
27-fold quotients : {2,4,2,2}*64
54-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,28)( 2,29)( 3,30)( 4,34)( 5,35)( 6,36)( 7,31)( 8,32)( 9,33)(10,46)
(11,47)(12,48)(13,52)(14,53)(15,54)(16,49)(17,50)(18,51)(19,37)(20,38)(21,39)
(22,43)(23,44)(24,45)(25,40)(26,41)(27,42);;
s1 := ( 1,10)( 2,12)( 3,11)( 4,14)( 5,13)( 6,15)( 7,18)( 8,17)( 9,16)(20,21)
(22,23)(25,27)(28,37)(29,39)(30,38)(31,41)(32,40)(33,42)(34,45)(35,44)(36,43)
(47,48)(49,50)(52,54);;
s2 := ( 1, 2)( 4,20)( 5,19)( 6,21)( 7,11)( 8,10)( 9,12)(13,27)(14,26)(15,25)
(17,18)(23,24)(28,29)(31,47)(32,46)(33,48)(34,38)(35,37)(36,39)(40,54)(41,53)
(42,52)(44,45)(50,51);;
s3 := (55,56);;
s4 := (57,58);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(58)!( 1,28)( 2,29)( 3,30)( 4,34)( 5,35)( 6,36)( 7,31)( 8,32)( 9,33)
(10,46)(11,47)(12,48)(13,52)(14,53)(15,54)(16,49)(17,50)(18,51)(19,37)(20,38)
(21,39)(22,43)(23,44)(24,45)(25,40)(26,41)(27,42);
s1 := Sym(58)!( 1,10)( 2,12)( 3,11)( 4,14)( 5,13)( 6,15)( 7,18)( 8,17)( 9,16)
(20,21)(22,23)(25,27)(28,37)(29,39)(30,38)(31,41)(32,40)(33,42)(34,45)(35,44)
(36,43)(47,48)(49,50)(52,54);
s2 := Sym(58)!( 1, 2)( 4,20)( 5,19)( 6,21)( 7,11)( 8,10)( 9,12)(13,27)(14,26)
(15,25)(17,18)(23,24)(28,29)(31,47)(32,46)(33,48)(34,38)(35,37)(36,39)(40,54)
(41,53)(42,52)(44,45)(50,51);
s3 := Sym(58)!(55,56);
s4 := Sym(58)!(57,58);
poly := sub<Sym(58)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1 >;
to this polytope