include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,2,18,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,2,18,6}*1728b
if this polytope has a name.
Group : SmallGroup(1728,46164)
Rank : 6
Schlafli Type : {2,2,2,18,6}
Number of vertices, edges, etc : 2, 2, 2, 18, 54, 6
Order of s0s1s2s3s4s5 : 18
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,2,9,6}*864
3-fold quotients : {2,2,2,18,2}*576, {2,2,2,6,6}*576c
6-fold quotients : {2,2,2,9,2}*288, {2,2,2,3,6}*288
9-fold quotients : {2,2,2,6,2}*192
18-fold quotients : {2,2,2,3,2}*96
27-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (5,6);;
s3 := ( 8, 9)(10,13)(11,15)(12,14)(16,26)(17,25)(18,27)(19,32)(20,31)(21,33)
(22,29)(23,28)(24,30)(35,36)(37,40)(38,42)(39,41)(43,53)(44,52)(45,54)(46,59)
(47,58)(48,60)(49,56)(50,55)(51,57);;
s4 := ( 7,46)( 8,48)( 9,47)(10,43)(11,45)(12,44)(13,49)(14,51)(15,50)(16,37)
(17,39)(18,38)(19,34)(20,36)(21,35)(22,40)(23,42)(24,41)(25,56)(26,55)(27,57)
(28,53)(29,52)(30,54)(31,59)(32,58)(33,60);;
s5 := (10,13)(11,14)(12,15)(19,22)(20,23)(21,24)(28,31)(29,32)(30,33)(37,40)
(38,41)(39,42)(46,49)(47,50)(48,51)(55,58)(56,59)(57,60);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s5*s3*s4*s5*s4*s5*s3*s4*s5*s4,
s3*s4*s5*s4*s3*s4*s3*s4*s5*s4*s3*s4,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(60)!(1,2);
s1 := Sym(60)!(3,4);
s2 := Sym(60)!(5,6);
s3 := Sym(60)!( 8, 9)(10,13)(11,15)(12,14)(16,26)(17,25)(18,27)(19,32)(20,31)
(21,33)(22,29)(23,28)(24,30)(35,36)(37,40)(38,42)(39,41)(43,53)(44,52)(45,54)
(46,59)(47,58)(48,60)(49,56)(50,55)(51,57);
s4 := Sym(60)!( 7,46)( 8,48)( 9,47)(10,43)(11,45)(12,44)(13,49)(14,51)(15,50)
(16,37)(17,39)(18,38)(19,34)(20,36)(21,35)(22,40)(23,42)(24,41)(25,56)(26,55)
(27,57)(28,53)(29,52)(30,54)(31,59)(32,58)(33,60);
s5 := Sym(60)!(10,13)(11,14)(12,15)(19,22)(20,23)(21,24)(28,31)(29,32)(30,33)
(37,40)(38,41)(39,42)(46,49)(47,50)(48,51)(55,58)(56,59)(57,60);
poly := sub<Sym(60)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s5*s3*s4*s5*s4*s5*s3*s4*s5*s4,
s3*s4*s5*s4*s3*s4*s3*s4*s5*s4*s3*s4,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope