include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,18,6,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,18,6,2,2}*1728a
if this polytope has a name.
Group : SmallGroup(1728,46164)
Rank : 6
Schlafli Type : {2,18,6,2,2}
Number of vertices, edges, etc : 2, 18, 54, 6, 2, 2
Order of s0s1s2s3s4s5 : 18
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,18,2,2,2}*576, {2,6,6,2,2}*576a
6-fold quotients : {2,9,2,2,2}*288
9-fold quotients : {2,2,6,2,2}*192, {2,6,2,2,2}*192
18-fold quotients : {2,2,3,2,2}*96, {2,3,2,2,2}*96
27-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 7, 8)(10,11)(12,22)(13,21)(14,23)(15,25)(16,24)(17,26)(18,28)
(19,27)(20,29)(31,32)(34,35)(37,38)(39,49)(40,48)(41,50)(42,52)(43,51)(44,53)
(45,55)(46,54)(47,56);;
s2 := ( 3,12)( 4,14)( 5,13)( 6,18)( 7,20)( 8,19)( 9,15)(10,17)(11,16)(21,22)
(24,28)(25,27)(26,29)(30,39)(31,41)(32,40)(33,45)(34,47)(35,46)(36,42)(37,44)
(38,43)(48,49)(51,55)(52,54)(53,56);;
s3 := ( 3,33)( 4,34)( 5,35)( 6,30)( 7,31)( 8,32)( 9,36)(10,37)(11,38)(12,42)
(13,43)(14,44)(15,39)(16,40)(17,41)(18,45)(19,46)(20,47)(21,51)(22,52)(23,53)
(24,48)(25,49)(26,50)(27,54)(28,55)(29,56);;
s4 := (57,58);;
s5 := (59,60);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(60)!(1,2);
s1 := Sym(60)!( 4, 5)( 7, 8)(10,11)(12,22)(13,21)(14,23)(15,25)(16,24)(17,26)
(18,28)(19,27)(20,29)(31,32)(34,35)(37,38)(39,49)(40,48)(41,50)(42,52)(43,51)
(44,53)(45,55)(46,54)(47,56);
s2 := Sym(60)!( 3,12)( 4,14)( 5,13)( 6,18)( 7,20)( 8,19)( 9,15)(10,17)(11,16)
(21,22)(24,28)(25,27)(26,29)(30,39)(31,41)(32,40)(33,45)(34,47)(35,46)(36,42)
(37,44)(38,43)(48,49)(51,55)(52,54)(53,56);
s3 := Sym(60)!( 3,33)( 4,34)( 5,35)( 6,30)( 7,31)( 8,32)( 9,36)(10,37)(11,38)
(12,42)(13,43)(14,44)(15,39)(16,40)(17,41)(18,45)(19,46)(20,47)(21,51)(22,52)
(23,53)(24,48)(25,49)(26,50)(27,54)(28,55)(29,56);
s4 := Sym(60)!(57,58);
s5 := Sym(60)!(59,60);
poly := sub<Sym(60)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s4*s5*s4*s5, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope