include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,4,12}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,4,12}*1728b
Also Known As : {{4,4}6,{4,12|2}}. if this polytope has another name.
Group : SmallGroup(1728,46587)
Rank : 4
Schlafli Type : {4,4,12}
Number of vertices, edges, etc : 18, 36, 108, 12
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,4,6}*864b
3-fold quotients : {4,4,4}*576a
6-fold quotients : {4,4,2}*288
12-fold quotients : {4,4,2}*144
18-fold quotients : {2,2,12}*96
36-fold quotients : {2,2,6}*48
54-fold quotients : {2,2,4}*32
72-fold quotients : {2,2,3}*24
108-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 8)( 3, 6)( 4, 7)( 11, 17)( 12, 15)( 13, 16)( 20, 26)( 21, 24)
( 22, 25)( 29, 35)( 30, 33)( 31, 34)( 38, 44)( 39, 42)( 40, 43)( 47, 53)
( 48, 51)( 49, 52)( 56, 62)( 57, 60)( 58, 61)( 65, 71)( 66, 69)( 67, 70)
( 74, 80)( 75, 78)( 76, 79)( 83, 89)( 84, 87)( 85, 88)( 92, 98)( 93, 96)
( 94, 97)(101,107)(102,105)(103,106);;
s1 := ( 4, 9)( 5, 7)( 6, 8)( 13, 18)( 14, 16)( 15, 17)( 22, 27)( 23, 25)
( 24, 26)( 31, 36)( 32, 34)( 33, 35)( 40, 45)( 41, 43)( 42, 44)( 49, 54)
( 50, 52)( 51, 53)( 58, 63)( 59, 61)( 60, 62)( 67, 72)( 68, 70)( 69, 71)
( 76, 81)( 77, 79)( 78, 80)( 85, 90)( 86, 88)( 87, 89)( 94, 99)( 95, 97)
( 96, 98)(103,108)(104,106)(105,107);;
s2 := ( 1, 5)( 2, 7)( 4, 8)( 10, 23)( 11, 25)( 12, 21)( 13, 26)( 14, 19)
( 15, 24)( 16, 20)( 17, 22)( 18, 27)( 28, 32)( 29, 34)( 31, 35)( 37, 50)
( 38, 52)( 39, 48)( 40, 53)( 41, 46)( 42, 51)( 43, 47)( 44, 49)( 45, 54)
( 55, 86)( 56, 88)( 57, 84)( 58, 89)( 59, 82)( 60, 87)( 61, 83)( 62, 85)
( 63, 90)( 64,104)( 65,106)( 66,102)( 67,107)( 68,100)( 69,105)( 70,101)
( 71,103)( 72,108)( 73, 95)( 74, 97)( 75, 93)( 76, 98)( 77, 91)( 78, 96)
( 79, 92)( 80, 94)( 81, 99);;
s3 := ( 1, 64)( 2, 65)( 3, 66)( 4, 67)( 5, 68)( 6, 69)( 7, 70)( 8, 71)
( 9, 72)( 10, 55)( 11, 56)( 12, 57)( 13, 58)( 14, 59)( 15, 60)( 16, 61)
( 17, 62)( 18, 63)( 19, 73)( 20, 74)( 21, 75)( 22, 76)( 23, 77)( 24, 78)
( 25, 79)( 26, 80)( 27, 81)( 28, 91)( 29, 92)( 30, 93)( 31, 94)( 32, 95)
( 33, 96)( 34, 97)( 35, 98)( 36, 99)( 37, 82)( 38, 83)( 39, 84)( 40, 85)
( 41, 86)( 42, 87)( 43, 88)( 44, 89)( 45, 90)( 46,100)( 47,101)( 48,102)
( 49,103)( 50,104)( 51,105)( 52,106)( 53,107)( 54,108);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(108)!( 2, 8)( 3, 6)( 4, 7)( 11, 17)( 12, 15)( 13, 16)( 20, 26)
( 21, 24)( 22, 25)( 29, 35)( 30, 33)( 31, 34)( 38, 44)( 39, 42)( 40, 43)
( 47, 53)( 48, 51)( 49, 52)( 56, 62)( 57, 60)( 58, 61)( 65, 71)( 66, 69)
( 67, 70)( 74, 80)( 75, 78)( 76, 79)( 83, 89)( 84, 87)( 85, 88)( 92, 98)
( 93, 96)( 94, 97)(101,107)(102,105)(103,106);
s1 := Sym(108)!( 4, 9)( 5, 7)( 6, 8)( 13, 18)( 14, 16)( 15, 17)( 22, 27)
( 23, 25)( 24, 26)( 31, 36)( 32, 34)( 33, 35)( 40, 45)( 41, 43)( 42, 44)
( 49, 54)( 50, 52)( 51, 53)( 58, 63)( 59, 61)( 60, 62)( 67, 72)( 68, 70)
( 69, 71)( 76, 81)( 77, 79)( 78, 80)( 85, 90)( 86, 88)( 87, 89)( 94, 99)
( 95, 97)( 96, 98)(103,108)(104,106)(105,107);
s2 := Sym(108)!( 1, 5)( 2, 7)( 4, 8)( 10, 23)( 11, 25)( 12, 21)( 13, 26)
( 14, 19)( 15, 24)( 16, 20)( 17, 22)( 18, 27)( 28, 32)( 29, 34)( 31, 35)
( 37, 50)( 38, 52)( 39, 48)( 40, 53)( 41, 46)( 42, 51)( 43, 47)( 44, 49)
( 45, 54)( 55, 86)( 56, 88)( 57, 84)( 58, 89)( 59, 82)( 60, 87)( 61, 83)
( 62, 85)( 63, 90)( 64,104)( 65,106)( 66,102)( 67,107)( 68,100)( 69,105)
( 70,101)( 71,103)( 72,108)( 73, 95)( 74, 97)( 75, 93)( 76, 98)( 77, 91)
( 78, 96)( 79, 92)( 80, 94)( 81, 99);
s3 := Sym(108)!( 1, 64)( 2, 65)( 3, 66)( 4, 67)( 5, 68)( 6, 69)( 7, 70)
( 8, 71)( 9, 72)( 10, 55)( 11, 56)( 12, 57)( 13, 58)( 14, 59)( 15, 60)
( 16, 61)( 17, 62)( 18, 63)( 19, 73)( 20, 74)( 21, 75)( 22, 76)( 23, 77)
( 24, 78)( 25, 79)( 26, 80)( 27, 81)( 28, 91)( 29, 92)( 30, 93)( 31, 94)
( 32, 95)( 33, 96)( 34, 97)( 35, 98)( 36, 99)( 37, 82)( 38, 83)( 39, 84)
( 40, 85)( 41, 86)( 42, 87)( 43, 88)( 44, 89)( 45, 90)( 46,100)( 47,101)
( 48,102)( 49,103)( 50,104)( 51,105)( 52,106)( 53,107)( 54,108);
poly := sub<Sym(108)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
References : None.
to this polytope