Polytope of Type {12,12,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,12,2}*1728j
if this polytope has a name.
Group : SmallGroup(1728,46611)
Rank : 4
Schlafli Type : {12,12,2}
Number of vertices, edges, etc : 36, 216, 36, 2
Order of s0s1s2s3 : 4
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,12,2}*864h
   3-fold quotients : {12,4,2}*576
   6-fold quotients : {6,4,2}*288
   12-fold quotients : {6,4,2}*144
   27-fold quotients : {4,4,2}*64
   54-fold quotients : {2,4,2}*32, {4,2,2}*32
   108-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1, 55)(  2, 57)(  3, 56)(  4, 61)(  5, 63)(  6, 62)(  7, 58)(  8, 60)
(  9, 59)( 10, 73)( 11, 75)( 12, 74)( 13, 79)( 14, 81)( 15, 80)( 16, 76)
( 17, 78)( 18, 77)( 19, 64)( 20, 66)( 21, 65)( 22, 70)( 23, 72)( 24, 71)
( 25, 67)( 26, 69)( 27, 68)( 28, 82)( 29, 84)( 30, 83)( 31, 88)( 32, 90)
( 33, 89)( 34, 85)( 35, 87)( 36, 86)( 37,100)( 38,102)( 39,101)( 40,106)
( 41,108)( 42,107)( 43,103)( 44,105)( 45,104)( 46, 91)( 47, 93)( 48, 92)
( 49, 97)( 50, 99)( 51, 98)( 52, 94)( 53, 96)( 54, 95)(109,190)(110,192)
(111,191)(112,196)(113,198)(114,197)(115,193)(116,195)(117,194)(118,208)
(119,210)(120,209)(121,214)(122,216)(123,215)(124,211)(125,213)(126,212)
(127,199)(128,201)(129,200)(130,205)(131,207)(132,206)(133,202)(134,204)
(135,203)(136,163)(137,165)(138,164)(139,169)(140,171)(141,170)(142,166)
(143,168)(144,167)(145,181)(146,183)(147,182)(148,187)(149,189)(150,188)
(151,184)(152,186)(153,185)(154,172)(155,174)(156,173)(157,178)(158,180)
(159,179)(160,175)(161,177)(162,176);;
s1 := (  1,167)(  2,166)(  3,168)(  4,164)(  5,163)(  6,165)(  7,170)(  8,169)
(  9,171)( 10,179)( 11,178)( 12,180)( 13,176)( 14,175)( 15,177)( 16,173)
( 17,172)( 18,174)( 19,182)( 20,181)( 21,183)( 22,188)( 23,187)( 24,189)
( 25,185)( 26,184)( 27,186)( 28,194)( 29,193)( 30,195)( 31,191)( 32,190)
( 33,192)( 34,197)( 35,196)( 36,198)( 37,206)( 38,205)( 39,207)( 40,203)
( 41,202)( 42,204)( 43,200)( 44,199)( 45,201)( 46,209)( 47,208)( 48,210)
( 49,215)( 50,214)( 51,216)( 52,212)( 53,211)( 54,213)( 55,113)( 56,112)
( 57,114)( 58,110)( 59,109)( 60,111)( 61,116)( 62,115)( 63,117)( 64,125)
( 65,124)( 66,126)( 67,122)( 68,121)( 69,123)( 70,119)( 71,118)( 72,120)
( 73,128)( 74,127)( 75,129)( 76,134)( 77,133)( 78,135)( 79,131)( 80,130)
( 81,132)( 82,140)( 83,139)( 84,141)( 85,137)( 86,136)( 87,138)( 88,143)
( 89,142)( 90,144)( 91,152)( 92,151)( 93,153)( 94,149)( 95,148)( 96,150)
( 97,146)( 98,145)( 99,147)(100,155)(101,154)(102,156)(103,161)(104,160)
(105,162)(106,158)(107,157)(108,159);;
s2 := (  2,  3)(  4, 22)(  5, 24)(  6, 23)(  7, 16)(  8, 18)(  9, 17)( 10, 19)
( 11, 21)( 12, 20)( 14, 15)( 26, 27)( 29, 30)( 31, 49)( 32, 51)( 33, 50)
( 34, 43)( 35, 45)( 36, 44)( 37, 46)( 38, 48)( 39, 47)( 41, 42)( 53, 54)
( 56, 57)( 58, 76)( 59, 78)( 60, 77)( 61, 70)( 62, 72)( 63, 71)( 64, 73)
( 65, 75)( 66, 74)( 68, 69)( 80, 81)( 83, 84)( 85,103)( 86,105)( 87,104)
( 88, 97)( 89, 99)( 90, 98)( 91,100)( 92,102)( 93,101)( 95, 96)(107,108)
(109,190)(110,192)(111,191)(112,211)(113,213)(114,212)(115,205)(116,207)
(117,206)(118,208)(119,210)(120,209)(121,202)(122,204)(123,203)(124,196)
(125,198)(126,197)(127,199)(128,201)(129,200)(130,193)(131,195)(132,194)
(133,214)(134,216)(135,215)(136,163)(137,165)(138,164)(139,184)(140,186)
(141,185)(142,178)(143,180)(144,179)(145,181)(146,183)(147,182)(148,175)
(149,177)(150,176)(151,169)(152,171)(153,170)(154,172)(155,174)(156,173)
(157,166)(158,168)(159,167)(160,187)(161,189)(162,188);;
s3 := (217,218);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(218)!(  1, 55)(  2, 57)(  3, 56)(  4, 61)(  5, 63)(  6, 62)(  7, 58)
(  8, 60)(  9, 59)( 10, 73)( 11, 75)( 12, 74)( 13, 79)( 14, 81)( 15, 80)
( 16, 76)( 17, 78)( 18, 77)( 19, 64)( 20, 66)( 21, 65)( 22, 70)( 23, 72)
( 24, 71)( 25, 67)( 26, 69)( 27, 68)( 28, 82)( 29, 84)( 30, 83)( 31, 88)
( 32, 90)( 33, 89)( 34, 85)( 35, 87)( 36, 86)( 37,100)( 38,102)( 39,101)
( 40,106)( 41,108)( 42,107)( 43,103)( 44,105)( 45,104)( 46, 91)( 47, 93)
( 48, 92)( 49, 97)( 50, 99)( 51, 98)( 52, 94)( 53, 96)( 54, 95)(109,190)
(110,192)(111,191)(112,196)(113,198)(114,197)(115,193)(116,195)(117,194)
(118,208)(119,210)(120,209)(121,214)(122,216)(123,215)(124,211)(125,213)
(126,212)(127,199)(128,201)(129,200)(130,205)(131,207)(132,206)(133,202)
(134,204)(135,203)(136,163)(137,165)(138,164)(139,169)(140,171)(141,170)
(142,166)(143,168)(144,167)(145,181)(146,183)(147,182)(148,187)(149,189)
(150,188)(151,184)(152,186)(153,185)(154,172)(155,174)(156,173)(157,178)
(158,180)(159,179)(160,175)(161,177)(162,176);
s1 := Sym(218)!(  1,167)(  2,166)(  3,168)(  4,164)(  5,163)(  6,165)(  7,170)
(  8,169)(  9,171)( 10,179)( 11,178)( 12,180)( 13,176)( 14,175)( 15,177)
( 16,173)( 17,172)( 18,174)( 19,182)( 20,181)( 21,183)( 22,188)( 23,187)
( 24,189)( 25,185)( 26,184)( 27,186)( 28,194)( 29,193)( 30,195)( 31,191)
( 32,190)( 33,192)( 34,197)( 35,196)( 36,198)( 37,206)( 38,205)( 39,207)
( 40,203)( 41,202)( 42,204)( 43,200)( 44,199)( 45,201)( 46,209)( 47,208)
( 48,210)( 49,215)( 50,214)( 51,216)( 52,212)( 53,211)( 54,213)( 55,113)
( 56,112)( 57,114)( 58,110)( 59,109)( 60,111)( 61,116)( 62,115)( 63,117)
( 64,125)( 65,124)( 66,126)( 67,122)( 68,121)( 69,123)( 70,119)( 71,118)
( 72,120)( 73,128)( 74,127)( 75,129)( 76,134)( 77,133)( 78,135)( 79,131)
( 80,130)( 81,132)( 82,140)( 83,139)( 84,141)( 85,137)( 86,136)( 87,138)
( 88,143)( 89,142)( 90,144)( 91,152)( 92,151)( 93,153)( 94,149)( 95,148)
( 96,150)( 97,146)( 98,145)( 99,147)(100,155)(101,154)(102,156)(103,161)
(104,160)(105,162)(106,158)(107,157)(108,159);
s2 := Sym(218)!(  2,  3)(  4, 22)(  5, 24)(  6, 23)(  7, 16)(  8, 18)(  9, 17)
( 10, 19)( 11, 21)( 12, 20)( 14, 15)( 26, 27)( 29, 30)( 31, 49)( 32, 51)
( 33, 50)( 34, 43)( 35, 45)( 36, 44)( 37, 46)( 38, 48)( 39, 47)( 41, 42)
( 53, 54)( 56, 57)( 58, 76)( 59, 78)( 60, 77)( 61, 70)( 62, 72)( 63, 71)
( 64, 73)( 65, 75)( 66, 74)( 68, 69)( 80, 81)( 83, 84)( 85,103)( 86,105)
( 87,104)( 88, 97)( 89, 99)( 90, 98)( 91,100)( 92,102)( 93,101)( 95, 96)
(107,108)(109,190)(110,192)(111,191)(112,211)(113,213)(114,212)(115,205)
(116,207)(117,206)(118,208)(119,210)(120,209)(121,202)(122,204)(123,203)
(124,196)(125,198)(126,197)(127,199)(128,201)(129,200)(130,193)(131,195)
(132,194)(133,214)(134,216)(135,215)(136,163)(137,165)(138,164)(139,184)
(140,186)(141,185)(142,178)(143,180)(144,179)(145,181)(146,183)(147,182)
(148,175)(149,177)(150,176)(151,169)(152,171)(153,170)(154,172)(155,174)
(156,173)(157,166)(158,168)(159,167)(160,187)(161,189)(162,188);
s3 := Sym(218)!(217,218);
poly := sub<Sym(218)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope