include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,4,6,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,4,6,4}*1728a
if this polytope has a name.
Group : SmallGroup(1728,46672)
Rank : 5
Schlafli Type : {6,4,6,4}
Number of vertices, edges, etc : 9, 18, 18, 12, 4
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,4,6,2}*864a
3-fold quotients : {6,4,2,4}*576
6-fold quotients : {6,4,2,2}*288
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)( 11, 12)( 13, 16)( 14, 18)( 15, 17)
( 20, 21)( 22, 25)( 23, 27)( 24, 26)( 29, 30)( 31, 34)( 32, 36)( 33, 35)
( 38, 39)( 40, 43)( 41, 45)( 42, 44)( 47, 48)( 49, 52)( 50, 54)( 51, 53)
( 56, 57)( 58, 61)( 59, 63)( 60, 62)( 65, 66)( 67, 70)( 68, 72)( 69, 71)
( 74, 75)( 76, 79)( 77, 81)( 78, 80)( 83, 84)( 85, 88)( 86, 90)( 87, 89)
( 92, 93)( 94, 97)( 95, 99)( 96, 98)(101,102)(103,106)(104,108)(105,107);;
s1 := ( 1, 4)( 3, 9)( 5, 8)( 10, 13)( 12, 18)( 14, 17)( 19, 22)( 21, 27)
( 23, 26)( 28, 31)( 30, 36)( 32, 35)( 37, 40)( 39, 45)( 41, 44)( 46, 49)
( 48, 54)( 50, 53)( 55, 58)( 57, 63)( 59, 62)( 64, 67)( 66, 72)( 68, 71)
( 73, 76)( 75, 81)( 77, 80)( 82, 85)( 84, 90)( 86, 89)( 91, 94)( 93, 99)
( 95, 98)(100,103)(102,108)(104,107);;
s2 := ( 4, 9)( 5, 7)( 6, 8)( 10, 19)( 11, 20)( 12, 21)( 13, 27)( 14, 25)
( 15, 26)( 16, 23)( 17, 24)( 18, 22)( 31, 36)( 32, 34)( 33, 35)( 37, 46)
( 38, 47)( 39, 48)( 40, 54)( 41, 52)( 42, 53)( 43, 50)( 44, 51)( 45, 49)
( 58, 63)( 59, 61)( 60, 62)( 64, 73)( 65, 74)( 66, 75)( 67, 81)( 68, 79)
( 69, 80)( 70, 77)( 71, 78)( 72, 76)( 85, 90)( 86, 88)( 87, 89)( 91,100)
( 92,101)( 93,102)( 94,108)( 95,106)( 96,107)( 97,104)( 98,105)( 99,103);;
s3 := ( 1, 10)( 2, 11)( 3, 12)( 4, 13)( 5, 14)( 6, 15)( 7, 16)( 8, 17)
( 9, 18)( 28, 37)( 29, 38)( 30, 39)( 31, 40)( 32, 41)( 33, 42)( 34, 43)
( 35, 44)( 36, 45)( 55, 91)( 56, 92)( 57, 93)( 58, 94)( 59, 95)( 60, 96)
( 61, 97)( 62, 98)( 63, 99)( 64, 82)( 65, 83)( 66, 84)( 67, 85)( 68, 86)
( 69, 87)( 70, 88)( 71, 89)( 72, 90)( 73,100)( 74,101)( 75,102)( 76,103)
( 77,104)( 78,105)( 79,106)( 80,107)( 81,108);;
s4 := ( 1, 55)( 2, 56)( 3, 57)( 4, 58)( 5, 59)( 6, 60)( 7, 61)( 8, 62)
( 9, 63)( 10, 64)( 11, 65)( 12, 66)( 13, 67)( 14, 68)( 15, 69)( 16, 70)
( 17, 71)( 18, 72)( 19, 73)( 20, 74)( 21, 75)( 22, 76)( 23, 77)( 24, 78)
( 25, 79)( 26, 80)( 27, 81)( 28, 82)( 29, 83)( 30, 84)( 31, 85)( 32, 86)
( 33, 87)( 34, 88)( 35, 89)( 36, 90)( 37, 91)( 38, 92)( 39, 93)( 40, 94)
( 41, 95)( 42, 96)( 43, 97)( 44, 98)( 45, 99)( 46,100)( 47,101)( 48,102)
( 49,103)( 50,104)( 51,105)( 52,106)( 53,107)( 54,108);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s4*s3*s2*s3*s4*s3,
s3*s4*s3*s4*s3*s4*s3*s4, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(108)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)( 11, 12)( 13, 16)( 14, 18)
( 15, 17)( 20, 21)( 22, 25)( 23, 27)( 24, 26)( 29, 30)( 31, 34)( 32, 36)
( 33, 35)( 38, 39)( 40, 43)( 41, 45)( 42, 44)( 47, 48)( 49, 52)( 50, 54)
( 51, 53)( 56, 57)( 58, 61)( 59, 63)( 60, 62)( 65, 66)( 67, 70)( 68, 72)
( 69, 71)( 74, 75)( 76, 79)( 77, 81)( 78, 80)( 83, 84)( 85, 88)( 86, 90)
( 87, 89)( 92, 93)( 94, 97)( 95, 99)( 96, 98)(101,102)(103,106)(104,108)
(105,107);
s1 := Sym(108)!( 1, 4)( 3, 9)( 5, 8)( 10, 13)( 12, 18)( 14, 17)( 19, 22)
( 21, 27)( 23, 26)( 28, 31)( 30, 36)( 32, 35)( 37, 40)( 39, 45)( 41, 44)
( 46, 49)( 48, 54)( 50, 53)( 55, 58)( 57, 63)( 59, 62)( 64, 67)( 66, 72)
( 68, 71)( 73, 76)( 75, 81)( 77, 80)( 82, 85)( 84, 90)( 86, 89)( 91, 94)
( 93, 99)( 95, 98)(100,103)(102,108)(104,107);
s2 := Sym(108)!( 4, 9)( 5, 7)( 6, 8)( 10, 19)( 11, 20)( 12, 21)( 13, 27)
( 14, 25)( 15, 26)( 16, 23)( 17, 24)( 18, 22)( 31, 36)( 32, 34)( 33, 35)
( 37, 46)( 38, 47)( 39, 48)( 40, 54)( 41, 52)( 42, 53)( 43, 50)( 44, 51)
( 45, 49)( 58, 63)( 59, 61)( 60, 62)( 64, 73)( 65, 74)( 66, 75)( 67, 81)
( 68, 79)( 69, 80)( 70, 77)( 71, 78)( 72, 76)( 85, 90)( 86, 88)( 87, 89)
( 91,100)( 92,101)( 93,102)( 94,108)( 95,106)( 96,107)( 97,104)( 98,105)
( 99,103);
s3 := Sym(108)!( 1, 10)( 2, 11)( 3, 12)( 4, 13)( 5, 14)( 6, 15)( 7, 16)
( 8, 17)( 9, 18)( 28, 37)( 29, 38)( 30, 39)( 31, 40)( 32, 41)( 33, 42)
( 34, 43)( 35, 44)( 36, 45)( 55, 91)( 56, 92)( 57, 93)( 58, 94)( 59, 95)
( 60, 96)( 61, 97)( 62, 98)( 63, 99)( 64, 82)( 65, 83)( 66, 84)( 67, 85)
( 68, 86)( 69, 87)( 70, 88)( 71, 89)( 72, 90)( 73,100)( 74,101)( 75,102)
( 76,103)( 77,104)( 78,105)( 79,106)( 80,107)( 81,108);
s4 := Sym(108)!( 1, 55)( 2, 56)( 3, 57)( 4, 58)( 5, 59)( 6, 60)( 7, 61)
( 8, 62)( 9, 63)( 10, 64)( 11, 65)( 12, 66)( 13, 67)( 14, 68)( 15, 69)
( 16, 70)( 17, 71)( 18, 72)( 19, 73)( 20, 74)( 21, 75)( 22, 76)( 23, 77)
( 24, 78)( 25, 79)( 26, 80)( 27, 81)( 28, 82)( 29, 83)( 30, 84)( 31, 85)
( 32, 86)( 33, 87)( 34, 88)( 35, 89)( 36, 90)( 37, 91)( 38, 92)( 39, 93)
( 40, 94)( 41, 95)( 42, 96)( 43, 97)( 44, 98)( 45, 99)( 46,100)( 47,101)
( 48,102)( 49,103)( 50,104)( 51,105)( 52,106)( 53,107)( 54,108);
poly := sub<Sym(108)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s4*s3*s2*s3*s4*s3,
s3*s4*s3*s4*s3*s4*s3*s4, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1 >;
References : None.
to this polytope