include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,12,6,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,12,6,6}*1728b
if this polytope has a name.
Group : SmallGroup(1728,47319)
Rank : 5
Schlafli Type : {2,12,6,6}
Number of vertices, edges, etc : 2, 12, 36, 18, 6
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,6,6,6}*864b
3-fold quotients : {2,12,2,6}*576, {2,12,6,2}*576a, {2,4,6,6}*576a
6-fold quotients : {2,12,2,3}*288, {2,2,6,6}*288a, {2,6,2,6}*288, {2,6,6,2}*288a
9-fold quotients : {2,12,2,2}*192, {2,4,2,6}*192, {2,4,6,2}*192a
12-fold quotients : {2,3,2,6}*144, {2,6,2,3}*144
18-fold quotients : {2,4,2,3}*96, {2,2,2,6}*96, {2,2,6,2}*96, {2,6,2,2}*96
24-fold quotients : {2,3,2,3}*72
27-fold quotients : {2,4,2,2}*64
36-fold quotients : {2,2,2,3}*48, {2,2,3,2}*48, {2,3,2,2}*48
54-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 12, 21)( 13, 22)( 14, 23)( 15, 24)( 16, 25)( 17, 26)( 18, 27)( 19, 28)
( 20, 29)( 39, 48)( 40, 49)( 41, 50)( 42, 51)( 43, 52)( 44, 53)( 45, 54)
( 46, 55)( 47, 56)( 57, 84)( 58, 85)( 59, 86)( 60, 87)( 61, 88)( 62, 89)
( 63, 90)( 64, 91)( 65, 92)( 66,102)( 67,103)( 68,104)( 69,105)( 70,106)
( 71,107)( 72,108)( 73,109)( 74,110)( 75, 93)( 76, 94)( 77, 95)( 78, 96)
( 79, 97)( 80, 98)( 81, 99)( 82,100)( 83,101);;
s2 := ( 3, 66)( 4, 68)( 5, 67)( 6, 69)( 7, 71)( 8, 70)( 9, 72)( 10, 74)
( 11, 73)( 12, 57)( 13, 59)( 14, 58)( 15, 60)( 16, 62)( 17, 61)( 18, 63)
( 19, 65)( 20, 64)( 21, 75)( 22, 77)( 23, 76)( 24, 78)( 25, 80)( 26, 79)
( 27, 81)( 28, 83)( 29, 82)( 30, 93)( 31, 95)( 32, 94)( 33, 96)( 34, 98)
( 35, 97)( 36, 99)( 37,101)( 38,100)( 39, 84)( 40, 86)( 41, 85)( 42, 87)
( 43, 89)( 44, 88)( 45, 90)( 46, 92)( 47, 91)( 48,102)( 49,104)( 50,103)
( 51,105)( 52,107)( 53,106)( 54,108)( 55,110)( 56,109);;
s3 := ( 3, 4)( 6, 10)( 7, 9)( 8, 11)( 12, 13)( 15, 19)( 16, 18)( 17, 20)
( 21, 22)( 24, 28)( 25, 27)( 26, 29)( 30, 31)( 33, 37)( 34, 36)( 35, 38)
( 39, 40)( 42, 46)( 43, 45)( 44, 47)( 48, 49)( 51, 55)( 52, 54)( 53, 56)
( 57, 58)( 60, 64)( 61, 63)( 62, 65)( 66, 67)( 69, 73)( 70, 72)( 71, 74)
( 75, 76)( 78, 82)( 79, 81)( 80, 83)( 84, 85)( 87, 91)( 88, 90)( 89, 92)
( 93, 94)( 96,100)( 97, 99)( 98,101)(102,103)(105,109)(106,108)(107,110);;
s4 := ( 3, 6)( 4, 7)( 5, 8)( 12, 15)( 13, 16)( 14, 17)( 21, 24)( 22, 25)
( 23, 26)( 30, 33)( 31, 34)( 32, 35)( 39, 42)( 40, 43)( 41, 44)( 48, 51)
( 49, 52)( 50, 53)( 57, 60)( 58, 61)( 59, 62)( 66, 69)( 67, 70)( 68, 71)
( 75, 78)( 76, 79)( 77, 80)( 84, 87)( 85, 88)( 86, 89)( 93, 96)( 94, 97)
( 95, 98)(102,105)(103,106)(104,107);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s4*s3*s2*s3*s4*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(110)!(1,2);
s1 := Sym(110)!( 12, 21)( 13, 22)( 14, 23)( 15, 24)( 16, 25)( 17, 26)( 18, 27)
( 19, 28)( 20, 29)( 39, 48)( 40, 49)( 41, 50)( 42, 51)( 43, 52)( 44, 53)
( 45, 54)( 46, 55)( 47, 56)( 57, 84)( 58, 85)( 59, 86)( 60, 87)( 61, 88)
( 62, 89)( 63, 90)( 64, 91)( 65, 92)( 66,102)( 67,103)( 68,104)( 69,105)
( 70,106)( 71,107)( 72,108)( 73,109)( 74,110)( 75, 93)( 76, 94)( 77, 95)
( 78, 96)( 79, 97)( 80, 98)( 81, 99)( 82,100)( 83,101);
s2 := Sym(110)!( 3, 66)( 4, 68)( 5, 67)( 6, 69)( 7, 71)( 8, 70)( 9, 72)
( 10, 74)( 11, 73)( 12, 57)( 13, 59)( 14, 58)( 15, 60)( 16, 62)( 17, 61)
( 18, 63)( 19, 65)( 20, 64)( 21, 75)( 22, 77)( 23, 76)( 24, 78)( 25, 80)
( 26, 79)( 27, 81)( 28, 83)( 29, 82)( 30, 93)( 31, 95)( 32, 94)( 33, 96)
( 34, 98)( 35, 97)( 36, 99)( 37,101)( 38,100)( 39, 84)( 40, 86)( 41, 85)
( 42, 87)( 43, 89)( 44, 88)( 45, 90)( 46, 92)( 47, 91)( 48,102)( 49,104)
( 50,103)( 51,105)( 52,107)( 53,106)( 54,108)( 55,110)( 56,109);
s3 := Sym(110)!( 3, 4)( 6, 10)( 7, 9)( 8, 11)( 12, 13)( 15, 19)( 16, 18)
( 17, 20)( 21, 22)( 24, 28)( 25, 27)( 26, 29)( 30, 31)( 33, 37)( 34, 36)
( 35, 38)( 39, 40)( 42, 46)( 43, 45)( 44, 47)( 48, 49)( 51, 55)( 52, 54)
( 53, 56)( 57, 58)( 60, 64)( 61, 63)( 62, 65)( 66, 67)( 69, 73)( 70, 72)
( 71, 74)( 75, 76)( 78, 82)( 79, 81)( 80, 83)( 84, 85)( 87, 91)( 88, 90)
( 89, 92)( 93, 94)( 96,100)( 97, 99)( 98,101)(102,103)(105,109)(106,108)
(107,110);
s4 := Sym(110)!( 3, 6)( 4, 7)( 5, 8)( 12, 15)( 13, 16)( 14, 17)( 21, 24)
( 22, 25)( 23, 26)( 30, 33)( 31, 34)( 32, 35)( 39, 42)( 40, 43)( 41, 44)
( 48, 51)( 49, 52)( 50, 53)( 57, 60)( 58, 61)( 59, 62)( 66, 69)( 67, 70)
( 68, 71)( 75, 78)( 76, 79)( 77, 80)( 84, 87)( 85, 88)( 86, 89)( 93, 96)
( 94, 97)( 95, 98)(102,105)(103,106)(104,107);
poly := sub<Sym(110)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s4*s3*s2*s3*s4*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope