Polytope of Type {6,6,2,12}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6,2,12}*1728a
if this polytope has a name.
Group : SmallGroup(1728,47319)
Rank : 5
Schlafli Type : {6,6,2,12}
Number of vertices, edges, etc : 6, 18, 6, 12, 12
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,6,2,6}*864a
   3-fold quotients : {2,6,2,12}*576, {6,2,2,12}*576, {6,6,2,4}*576a
   4-fold quotients : {6,6,2,3}*432a
   6-fold quotients : {2,3,2,12}*288, {3,2,2,12}*288, {2,6,2,6}*288, {6,2,2,6}*288, {6,6,2,2}*288a
   9-fold quotients : {2,2,2,12}*192, {2,6,2,4}*192, {6,2,2,4}*192
   12-fold quotients : {2,3,2,6}*144, {2,6,2,3}*144, {3,2,2,6}*144, {6,2,2,3}*144
   18-fold quotients : {2,3,2,4}*96, {3,2,2,4}*96, {2,2,2,6}*96, {2,6,2,2}*96, {6,2,2,2}*96
   24-fold quotients : {2,3,2,3}*72, {3,2,2,3}*72
   27-fold quotients : {2,2,2,4}*64
   36-fold quotients : {2,2,2,3}*48, {2,3,2,2}*48, {3,2,2,2}*48
   54-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 5, 6)( 9,10)(11,12)(13,14)(15,16)(17,18);;
s1 := ( 1, 5)( 2, 9)( 3,13)( 4,11)( 7,17)( 8,15)(12,14)(16,18);;
s2 := ( 1, 7)( 2, 3)( 4, 8)( 5,15)( 6,16)( 9,11)(10,12)(13,17)(14,18);;
s3 := (20,21)(22,23)(25,28)(26,27)(29,30);;
s4 := (19,25)(20,22)(21,29)(23,26)(24,27)(28,30);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s1*s2*s1*s0*s1*s2*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(30)!( 5, 6)( 9,10)(11,12)(13,14)(15,16)(17,18);
s1 := Sym(30)!( 1, 5)( 2, 9)( 3,13)( 4,11)( 7,17)( 8,15)(12,14)(16,18);
s2 := Sym(30)!( 1, 7)( 2, 3)( 4, 8)( 5,15)( 6,16)( 9,11)(10,12)(13,17)(14,18);
s3 := Sym(30)!(20,21)(22,23)(25,28)(26,27)(29,30);
s4 := Sym(30)!(19,25)(20,22)(21,29)(23,26)(24,27)(28,30);
poly := sub<Sym(30)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope