Polytope of Type {6,12,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,12,6,2}*1728b
if this polytope has a name.
Group : SmallGroup(1728,47319)
Rank : 5
Schlafli Type : {6,12,6,2}
Number of vertices, edges, etc : 6, 36, 36, 6, 2
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,6,6,2}*864b
   3-fold quotients : {2,12,6,2}*576a, {6,12,2,2}*576a, {6,4,6,2}*576
   6-fold quotients : {2,6,6,2}*288a, {6,2,6,2}*288, {6,6,2,2}*288a
   9-fold quotients : {2,12,2,2}*192, {2,4,6,2}*192a, {6,4,2,2}*192a
   12-fold quotients : {3,2,6,2}*144, {6,2,3,2}*144
   18-fold quotients : {2,2,6,2}*96, {2,6,2,2}*96, {6,2,2,2}*96
   24-fold quotients : {3,2,3,2}*72
   27-fold quotients : {2,4,2,2}*64
   36-fold quotients : {2,2,3,2}*48, {2,3,2,2}*48, {3,2,2,2}*48
   54-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  3)(  5,  6)(  8,  9)( 11, 12)( 14, 15)( 17, 18)( 20, 21)( 23, 24)
( 26, 27)( 29, 30)( 32, 33)( 35, 36)( 38, 39)( 41, 42)( 44, 45)( 47, 48)
( 50, 51)( 53, 54)( 56, 57)( 59, 60)( 62, 63)( 65, 66)( 68, 69)( 71, 72)
( 74, 75)( 77, 78)( 80, 81)( 83, 84)( 86, 87)( 89, 90)( 92, 93)( 95, 96)
( 98, 99)(101,102)(104,105)(107,108);;
s1 := (  1,  2)(  4,  5)(  7,  8)( 10, 20)( 11, 19)( 12, 21)( 13, 23)( 14, 22)
( 15, 24)( 16, 26)( 17, 25)( 18, 27)( 28, 29)( 31, 32)( 34, 35)( 37, 47)
( 38, 46)( 39, 48)( 40, 50)( 41, 49)( 42, 51)( 43, 53)( 44, 52)( 45, 54)
( 55, 83)( 56, 82)( 57, 84)( 58, 86)( 59, 85)( 60, 87)( 61, 89)( 62, 88)
( 63, 90)( 64,101)( 65,100)( 66,102)( 67,104)( 68,103)( 69,105)( 70,107)
( 71,106)( 72,108)( 73, 92)( 74, 91)( 75, 93)( 76, 95)( 77, 94)( 78, 96)
( 79, 98)( 80, 97)( 81, 99);;
s2 := (  1, 64)(  2, 65)(  3, 66)(  4, 70)(  5, 71)(  6, 72)(  7, 67)(  8, 68)
(  9, 69)( 10, 55)( 11, 56)( 12, 57)( 13, 61)( 14, 62)( 15, 63)( 16, 58)
( 17, 59)( 18, 60)( 19, 73)( 20, 74)( 21, 75)( 22, 79)( 23, 80)( 24, 81)
( 25, 76)( 26, 77)( 27, 78)( 28, 91)( 29, 92)( 30, 93)( 31, 97)( 32, 98)
( 33, 99)( 34, 94)( 35, 95)( 36, 96)( 37, 82)( 38, 83)( 39, 84)( 40, 88)
( 41, 89)( 42, 90)( 43, 85)( 44, 86)( 45, 87)( 46,100)( 47,101)( 48,102)
( 49,106)( 50,107)( 51,108)( 52,103)( 53,104)( 54,105);;
s3 := (  1,  4)(  2,  5)(  3,  6)( 10, 13)( 11, 14)( 12, 15)( 19, 22)( 20, 23)
( 21, 24)( 28, 31)( 29, 32)( 30, 33)( 37, 40)( 38, 41)( 39, 42)( 46, 49)
( 47, 50)( 48, 51)( 55, 58)( 56, 59)( 57, 60)( 64, 67)( 65, 68)( 66, 69)
( 73, 76)( 74, 77)( 75, 78)( 82, 85)( 83, 86)( 84, 87)( 91, 94)( 92, 95)
( 93, 96)(100,103)(101,104)(102,105);;
s4 := (109,110);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s3*s2*s1*s2*s3*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(110)!(  2,  3)(  5,  6)(  8,  9)( 11, 12)( 14, 15)( 17, 18)( 20, 21)
( 23, 24)( 26, 27)( 29, 30)( 32, 33)( 35, 36)( 38, 39)( 41, 42)( 44, 45)
( 47, 48)( 50, 51)( 53, 54)( 56, 57)( 59, 60)( 62, 63)( 65, 66)( 68, 69)
( 71, 72)( 74, 75)( 77, 78)( 80, 81)( 83, 84)( 86, 87)( 89, 90)( 92, 93)
( 95, 96)( 98, 99)(101,102)(104,105)(107,108);
s1 := Sym(110)!(  1,  2)(  4,  5)(  7,  8)( 10, 20)( 11, 19)( 12, 21)( 13, 23)
( 14, 22)( 15, 24)( 16, 26)( 17, 25)( 18, 27)( 28, 29)( 31, 32)( 34, 35)
( 37, 47)( 38, 46)( 39, 48)( 40, 50)( 41, 49)( 42, 51)( 43, 53)( 44, 52)
( 45, 54)( 55, 83)( 56, 82)( 57, 84)( 58, 86)( 59, 85)( 60, 87)( 61, 89)
( 62, 88)( 63, 90)( 64,101)( 65,100)( 66,102)( 67,104)( 68,103)( 69,105)
( 70,107)( 71,106)( 72,108)( 73, 92)( 74, 91)( 75, 93)( 76, 95)( 77, 94)
( 78, 96)( 79, 98)( 80, 97)( 81, 99);
s2 := Sym(110)!(  1, 64)(  2, 65)(  3, 66)(  4, 70)(  5, 71)(  6, 72)(  7, 67)
(  8, 68)(  9, 69)( 10, 55)( 11, 56)( 12, 57)( 13, 61)( 14, 62)( 15, 63)
( 16, 58)( 17, 59)( 18, 60)( 19, 73)( 20, 74)( 21, 75)( 22, 79)( 23, 80)
( 24, 81)( 25, 76)( 26, 77)( 27, 78)( 28, 91)( 29, 92)( 30, 93)( 31, 97)
( 32, 98)( 33, 99)( 34, 94)( 35, 95)( 36, 96)( 37, 82)( 38, 83)( 39, 84)
( 40, 88)( 41, 89)( 42, 90)( 43, 85)( 44, 86)( 45, 87)( 46,100)( 47,101)
( 48,102)( 49,106)( 50,107)( 51,108)( 52,103)( 53,104)( 54,105);
s3 := Sym(110)!(  1,  4)(  2,  5)(  3,  6)( 10, 13)( 11, 14)( 12, 15)( 19, 22)
( 20, 23)( 21, 24)( 28, 31)( 29, 32)( 30, 33)( 37, 40)( 38, 41)( 39, 42)
( 46, 49)( 47, 50)( 48, 51)( 55, 58)( 56, 59)( 57, 60)( 64, 67)( 65, 68)
( 66, 69)( 73, 76)( 74, 77)( 75, 78)( 82, 85)( 83, 86)( 84, 87)( 91, 94)
( 92, 95)( 93, 96)(100,103)(101,104)(102,105);
s4 := Sym(110)!(109,110);
poly := sub<Sym(110)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s3*s2*s1*s2*s3*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope