Polytope of Type {12,6,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,6,6,2}*1728b
if this polytope has a name.
Group : SmallGroup(1728,47319)
Rank : 5
Schlafli Type : {12,6,6,2}
Number of vertices, edges, etc : 12, 36, 18, 6, 2
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,6,6,2}*864b
   3-fold quotients : {12,2,6,2}*576, {12,6,2,2}*576a, {4,6,6,2}*576a
   6-fold quotients : {12,2,3,2}*288, {2,6,6,2}*288a, {6,2,6,2}*288, {6,6,2,2}*288a
   9-fold quotients : {12,2,2,2}*192, {4,2,6,2}*192, {4,6,2,2}*192a
   12-fold quotients : {3,2,6,2}*144, {6,2,3,2}*144
   18-fold quotients : {4,2,3,2}*96, {2,2,6,2}*96, {2,6,2,2}*96, {6,2,2,2}*96
   24-fold quotients : {3,2,3,2}*72
   27-fold quotients : {4,2,2,2}*64
   36-fold quotients : {2,2,3,2}*48, {2,3,2,2}*48, {3,2,2,2}*48
   54-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 10, 19)( 11, 20)( 12, 21)( 13, 22)( 14, 23)( 15, 24)( 16, 25)( 17, 26)
( 18, 27)( 37, 46)( 38, 47)( 39, 48)( 40, 49)( 41, 50)( 42, 51)( 43, 52)
( 44, 53)( 45, 54)( 55, 82)( 56, 83)( 57, 84)( 58, 85)( 59, 86)( 60, 87)
( 61, 88)( 62, 89)( 63, 90)( 64,100)( 65,101)( 66,102)( 67,103)( 68,104)
( 69,105)( 70,106)( 71,107)( 72,108)( 73, 91)( 74, 92)( 75, 93)( 76, 94)
( 77, 95)( 78, 96)( 79, 97)( 80, 98)( 81, 99);;
s1 := (  1, 64)(  2, 66)(  3, 65)(  4, 67)(  5, 69)(  6, 68)(  7, 70)(  8, 72)
(  9, 71)( 10, 55)( 11, 57)( 12, 56)( 13, 58)( 14, 60)( 15, 59)( 16, 61)
( 17, 63)( 18, 62)( 19, 73)( 20, 75)( 21, 74)( 22, 76)( 23, 78)( 24, 77)
( 25, 79)( 26, 81)( 27, 80)( 28, 91)( 29, 93)( 30, 92)( 31, 94)( 32, 96)
( 33, 95)( 34, 97)( 35, 99)( 36, 98)( 37, 82)( 38, 84)( 39, 83)( 40, 85)
( 41, 87)( 42, 86)( 43, 88)( 44, 90)( 45, 89)( 46,100)( 47,102)( 48,101)
( 49,103)( 50,105)( 51,104)( 52,106)( 53,108)( 54,107);;
s2 := (  1,  2)(  4,  8)(  5,  7)(  6,  9)( 10, 11)( 13, 17)( 14, 16)( 15, 18)
( 19, 20)( 22, 26)( 23, 25)( 24, 27)( 28, 29)( 31, 35)( 32, 34)( 33, 36)
( 37, 38)( 40, 44)( 41, 43)( 42, 45)( 46, 47)( 49, 53)( 50, 52)( 51, 54)
( 55, 56)( 58, 62)( 59, 61)( 60, 63)( 64, 65)( 67, 71)( 68, 70)( 69, 72)
( 73, 74)( 76, 80)( 77, 79)( 78, 81)( 82, 83)( 85, 89)( 86, 88)( 87, 90)
( 91, 92)( 94, 98)( 95, 97)( 96, 99)(100,101)(103,107)(104,106)(105,108);;
s3 := (  1,  4)(  2,  5)(  3,  6)( 10, 13)( 11, 14)( 12, 15)( 19, 22)( 20, 23)
( 21, 24)( 28, 31)( 29, 32)( 30, 33)( 37, 40)( 38, 41)( 39, 42)( 46, 49)
( 47, 50)( 48, 51)( 55, 58)( 56, 59)( 57, 60)( 64, 67)( 65, 68)( 66, 69)
( 73, 76)( 74, 77)( 75, 78)( 82, 85)( 83, 86)( 84, 87)( 91, 94)( 92, 95)
( 93, 96)(100,103)(101,104)(102,105);;
s4 := (109,110);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s3*s2*s1*s2*s3*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(110)!( 10, 19)( 11, 20)( 12, 21)( 13, 22)( 14, 23)( 15, 24)( 16, 25)
( 17, 26)( 18, 27)( 37, 46)( 38, 47)( 39, 48)( 40, 49)( 41, 50)( 42, 51)
( 43, 52)( 44, 53)( 45, 54)( 55, 82)( 56, 83)( 57, 84)( 58, 85)( 59, 86)
( 60, 87)( 61, 88)( 62, 89)( 63, 90)( 64,100)( 65,101)( 66,102)( 67,103)
( 68,104)( 69,105)( 70,106)( 71,107)( 72,108)( 73, 91)( 74, 92)( 75, 93)
( 76, 94)( 77, 95)( 78, 96)( 79, 97)( 80, 98)( 81, 99);
s1 := Sym(110)!(  1, 64)(  2, 66)(  3, 65)(  4, 67)(  5, 69)(  6, 68)(  7, 70)
(  8, 72)(  9, 71)( 10, 55)( 11, 57)( 12, 56)( 13, 58)( 14, 60)( 15, 59)
( 16, 61)( 17, 63)( 18, 62)( 19, 73)( 20, 75)( 21, 74)( 22, 76)( 23, 78)
( 24, 77)( 25, 79)( 26, 81)( 27, 80)( 28, 91)( 29, 93)( 30, 92)( 31, 94)
( 32, 96)( 33, 95)( 34, 97)( 35, 99)( 36, 98)( 37, 82)( 38, 84)( 39, 83)
( 40, 85)( 41, 87)( 42, 86)( 43, 88)( 44, 90)( 45, 89)( 46,100)( 47,102)
( 48,101)( 49,103)( 50,105)( 51,104)( 52,106)( 53,108)( 54,107);
s2 := Sym(110)!(  1,  2)(  4,  8)(  5,  7)(  6,  9)( 10, 11)( 13, 17)( 14, 16)
( 15, 18)( 19, 20)( 22, 26)( 23, 25)( 24, 27)( 28, 29)( 31, 35)( 32, 34)
( 33, 36)( 37, 38)( 40, 44)( 41, 43)( 42, 45)( 46, 47)( 49, 53)( 50, 52)
( 51, 54)( 55, 56)( 58, 62)( 59, 61)( 60, 63)( 64, 65)( 67, 71)( 68, 70)
( 69, 72)( 73, 74)( 76, 80)( 77, 79)( 78, 81)( 82, 83)( 85, 89)( 86, 88)
( 87, 90)( 91, 92)( 94, 98)( 95, 97)( 96, 99)(100,101)(103,107)(104,106)
(105,108);
s3 := Sym(110)!(  1,  4)(  2,  5)(  3,  6)( 10, 13)( 11, 14)( 12, 15)( 19, 22)
( 20, 23)( 21, 24)( 28, 31)( 29, 32)( 30, 33)( 37, 40)( 38, 41)( 39, 42)
( 46, 49)( 47, 50)( 48, 51)( 55, 58)( 56, 59)( 57, 60)( 64, 67)( 65, 68)
( 66, 69)( 73, 76)( 74, 77)( 75, 78)( 82, 85)( 83, 86)( 84, 87)( 91, 94)
( 92, 95)( 93, 96)(100,103)(101,104)(102,105);
s4 := Sym(110)!(109,110);
poly := sub<Sym(110)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s3*s2*s1*s2*s3*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope